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Preface

The design of reliable communications requires that modulation and demodu-
lation techniques compensate for the deleterious e�ects of the communication
channel. Thus, one of the most important steps in the design of a reliable
communication system is a careful characterization of the communication
channel.

This document describes a general digital baseband channel model and its
realization with respect to the UHF line-of-sight communication channel. It
then develops several channel estimation techniques useful in estimating the
parameters of the channel model. Each of these channel estimation models
is analyzed and applied to both emulated laboratory data and to over-the-
air data. The over-the-air data includes measurements from a mobile US
Marine Corps HMMWV operating in an urban environment and a mobile
US Naval ship (USS Princeton) operating in the littoral environment. All
data was collected at San Diego, California during January and February of
1998 using 1 Mbps in the 225-400 MHz military UHF band.

Channel estimation by an adaptive �lter technique includes a demodu-
lation scheme robust to multipath fading and performed exceptionally well
in all scenarios. In contrast, conventional baseband channel estimation tech-
niques | that require a separate and blind demodulator | were sometimes
stymied by multipath.

This document illustrates the performance of these channel estimators
by comparing the estimated power delay pro�les, delay-spread functions,
and scattering functions for numerous data sets. The results are that the
mobile HMMWV operating in an urban environment can have a large num-
ber of multiple propagation paths typically with delay spreads less than 7
microseconds but with the possibility of a few paths with delay spreads up
to 17 microseconds. Fading is typically rapid (20-30 Hz). The mobile ship

iv



operating o� the coast typically has a single resolvable path with very slow
fading (less than 5 Hz). However, both the number of paths and the fade
rate increased when the ship was in transit in and around the city and its
bridges.

This research was sponsored by Drs. Neil Gerr, Rabinder Madan, and
Sherman Gee from the O�ce of Naval Research, Code 313.
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Chapter 1

Channel Estimation:

Background

The problem is to estimate an RF channel from a transmitted sequence
known to the user. Because of the number of details and assumptions that
constitute the radio setup and the processing, this chapter provides the reader
with a \top-down" orientation to this problem.

Figure 1.1 shows a schematic of the transmitter, channel, and receiver.
In this case, a pseudorandom (PN) sequence is transmitted | essentially a
Bernoulli or f0; 1g \coin 
ipping" sequence. It is encoded into a (complex-
valued) sequence. This sequence modulates a pulse train | typical pulses
are the square-root raised cosine. After D/A, this analog signal mixed to RF
band and ampli�ed for transmission through the RF environment. The RF
environment is usually considered to be a linear but time-varying �lter. For
example, a ship-to-shore link may have the signal arriving along a direct line-
of-sight (LOS) path and a delayed version arriving from the path re
ecting
o� the time-varying surface of the water. At the receiver, Figure 1.1 shows
this process is reversed.

The problem is that received sequence may not match the transmitted
sequence. Although distortion and timing errors are present in the radio,
we assume the major source of error is due to the channel. For example,
the ship-to-shore link will have the transmitted sequence and a delayed copy
present | both corrupted by additive and multiplicative channel noise. If the
channel were known, then some of its e�ects could be canceled and signal
error reduced. Accordingly, our focus is on the channel. Our goal is to
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capture channel e�ects in selected mathematical models, to o�er researchers
a collection of real-world channel measurements, and to make side-by-side
comparisons of selected channel estimation schemes.

up pulse upconvertPN BPSK
- - - - D/A -generator sampleencoder shaping HPA

?

time-variant
RF Channel

?

pulsedown LNAmatchedchannel A/D ����� sample downconvertshaping�lterestimate

Figure 1.1: Block diagram for estimating the channel using PN se-
quences. PN=pseudonoise; D/A=digital-to-analog; HPA=high-power am-
pli�er; LNA=low-noise ampli�er.

1.1 Document Outline

We start with two common channel models. Chapters 2 and 3 review the
Phase-Modulation Fading Simulator (PMFS) and the Quadrature-Modulation

Fading Simulator (QMFS), respectively. The PMFS is an excellent analytical
model that provides a slick treatment of the mathematical framework. The
reader should be pleasantly surprised by the ease which channel concepts
are handled by this model. The developments readily extend to the QMFS
and also permit a rapid treatment of that model. However, PMFS requires
additional \tricks" to overcome its ergodic properties. Thus, we use the
QMFS to handle the actual simulations in this report.

Because our focus is on the channel, both chapters work from their respec-
tive baseband models. We make explicit the baseband assumptions and o�er
error bounds when practical. Baseband assumptions require that the modu-
lation | as implemented in the receiver and transmitter | be linear. This
linearity depends mostly on the quality and operation of the transmitter's
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high-power ampli�er. For this reason, care was taken that the high-quality
ampli�er (See Chapter 7) used to make the real-world channel measurements
were operated in their linear region. Recent work has shown how to design
transmission sequences which mitigate ampli�er non-linearities [21], [23], [22].
This passband modeling makes an excellent starting point for future devel-
opments.

Both the PMFS and the QMFS are general channels models that re-
quire some work to specialize to a speci�c transmission and receiver setup.
Chapter 4 undertakes this task and develops a ship-to-shore QMFS using
the standard two-path model. Propagation losses for this two-path model
are compared against a sophisticated propagation code [70]. Although both
models generally agree in regions away from the ground, surface wave and
terrain cause major di�erences. Because these phenomena are not in the
path model, proper use of such path models should be limited to setting the
time delays and general power levels for the paths in the QFMS.

Chapter 5 makes the �rst comparisons between selected channel estima-
tors. Our benchmark channel estimator is the matched �lter. In this case, it
simply convolves the PN sequence with its reversion to estimate the channel.
This simple and robust estimator serves as a handy yardstick to assess more
sophisticated schemes. The Gauss-Markov estimator is commonly used but
does not account for the power level of uncorrelated noise. The Minimum-
Variance or Wiener �lter does handle such noise | provided the SNR is
known. Recent work on regularization by Hansen [32], [33], [34] | speci�-
cally his theory of L-curves | makes this estimator practical. Comparisons
on a variety of channels show the limitations of these methods and provide
a guide for channel estimation when applied to real data.

Chapter 6 reviews a system identi�cation approach to channel estimation.
The transmitted sequence is input to an adaptive �lter which is then forced to
approximate the received sequence. The claim is that this adaptive �lter then
approximates the unknown channel. Comparisons on a variety of channels
show the validity of this approach and lay the foundation for a future work
for maritime channel modeling by a tapped delay line.

Chapter 7 collects measurements from laboratory emulations and on-site
measurements. The laboratory emulations are valuable because they permit
various calibrations and take the step from the \toy" data of simulations
to the level of a controlled RF experiment. For example, a researcher de-
veloping channel estimation schemes can get a feel for model sensitivity by
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migrating to these laboratory measurements. The on-site measurements are
collections of transmissions from scenarios of interest to the US Navy. These

1measurements are available to researchers. Extending these measurements
to additional transmission scenarios is underway.

Chapter 8 gathers the preceding work to evaluate channel estimators on
selected maritime channels. Evaluation of time-invariant channels is straight-
forward: The channel estimates produce both the Power-Delay pro�le and the
Input Delay-Spread function. These estimates are laid side-by-side to let the
reader make a quick graphical comparison. More demanding is the estimation
of time-variant channels. The Input Delay-Spread functions are now random
so the displays are realizations drawn from the underlying ensemble. For
example, the maritime channels are typically modeled as a collection of a few
fading re
ectors. Again, laying the estimates side-by-side permits graphical
comparisons regarding the position and fading of these re
ectors.

Chapter 9 concludes this e�ort by summarizing the \lessons learned" and
the plans for Phase II.

1.2 Recent Channel Estimation Literature

What are future candidates for channel estimation algorithms? Table 1.1
provides a partial answer by laying out recent channel estimate schemes.
The columns tabulate the transmission scheme, the channel model, the pro-
cessing, and the references. It appears that each transmission scheme has its
suite of channel estimators. For example, OFDM admits several fascinating
schemes using pilot symbols. The comparative study of Sandell & Edfors
[72] is a �ne example of this pilot-based channel estimation using 2D inter-
polation. Relevant to the setup used in this report, the subspace methods
are the next set of target algorithms.

The recent dates on these references demonstrate that channel estima-
tion is a huge and active �eld. To write a chapter on every combination of
transmission scheme, time-variant channel, and channel estimator makes an
interesting combinational problem | not to mention actually carrying out
the analysis. Thus, the long-term value of this report is that it keeps to
the foundations for a particular transmission scheme and o�ers real-world
measurements to the research community.

1Contact Rich North at rnorth@spawar.navy.mil.
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Table 1.1: Channel Estimation: FS = frequency selective fading; FF = 
at
fading; MP = multipath; CCSE = combined channel and sequence estima-
tion.

Signal Channel Channel Estimation Reference
OFDM | SVD [1996] Edfors
OFDM FS CD3 [1996] Mignone
OFDM FF MMSE [1995] van de Beek
OFDM FF LS [1995] van de Beek
OFDM { pilot block subchannels [1995] Bossert
OFDM FS | [1995] Classen
CDMA FS antenna diversity [1996] Zvonar
CDMA MP subspace [1996] Bensley
CDMA MP pilot symbol [1995] Papproth
CDMA { subspace [1994] Bensley
TDMA FS MAPSD [1996] Giridhar
TDMA FS dual [1996] Baccarelli
TDMA FS interpolated training segments [1995] Pechtel
TDMA MP CCSE [1995] Ranta
TDMA { CCSE [1994] Lin
| { HOS [1996] Tugnait
| { HOS [1995] El-Khamy
CPM FS pilot symbol [1995] Kim
CPM FF pilot symbol [1996] Ho
OFDM-CDMA FS pilot symbol [1995] Mueller
| FS spatial [1995] Raleigh
DS-CDMA MP pilot signal [1996] Krenz
DS-CDMA MP adaptive gradient [1996] Krenz
DS-CDMA MP pilot symbol [1996] Andoh
| FS Taylor's expansion [1995] Guanghua
| { Per-survivor processing [1995] Polydoros
| MP pilot signal [1996] Fukasawa
| HF probe [1996] Willink
| FS CCSE [1995] Forest
| { CCSE [1995] Kuor-Hsin
| MP Combined RAKE and antenna [1995] Khalaj
| MP Per-survivor processing [1996] Hamied
DPSK FF adaptive symbol-aided [1996] Kong
BPSK { subchannel response matching [1995] Goeckell
CPFSK { reduced state sequence est. [1995] Poo
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1.3 Notation

The notation was selected to be consistent with as much of the literature
as possible and to permit the reader to \drop in" on an equation without a
lot of notational baggage. We follow Staley's notation in his excellent thesis
[82] wherein the subscripts \T" and \R" denote the transmitter and receiver.
Table 1.2 was designed with this rule in mind and with an e�ort to reduce
notational collisions.

Table 1.2: Table of Notation

Symbol Description
� roll-o� factor
D divergence factor
� complex permittivity
f frequency (Hertz)
f carrier frequency (Hertz)c

f maximal Doppler frequency or fate rate (Hertz)D

� re
ection coe�cient
G gain of transmitter's antennaT

G gain of receiver's antennaR

G free-space propagation gain0

h transmitter's antenna height (feet)T

h receiver's antenna height (feet)R

h(t; �) Input Delay-Spread function
h (t; � ) baseband Input Delay-Spread functionB

H(f; �) Output Doppler-Spread function
O oversampling factors

� wave length (meters)
p (f) Doppler scattering functionf

p (� ) power delay pro�le�

p (t) transmitter's pulse-shaping �lterT

p (t) receiver's matching �lterR

P transmitter's power (Watts)T

P receiver's power (Watts)R

P free-space power (Watts)0

P (f) power spectrum of fx(t)gxx

R roughness coe�cient
R (t ; t ) covariance of fx(t)gxx 1 2

R symbol rate (Hertz)b

t time (seconds)
T symbol duration (seconds)
� delay (seconds)
� grazing angle (radians)g

T (t; f) Time-Variant Transfer function
S (f ; f ) two-dimensional spectrum of fx(t)gxx 1 2

U (f; �) Doppler-Delay function
x (t) Raised cosine �lterRC
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The Fourier transform of a signal s(t) isZ 1
�j2�ftbs(f ) = e s(t)dt:

�1

The convolution of s(t) with a �lter h(t) isZ 1

h � s(t) = h(t� � )s(� )d�:
�1

A random process is denoted by fx(t)g. The covariance of fx(t)g is

R (t ; t ) = E[x(t )x(t )];xx 1 2 1 2

where the complex conjugate is denoted by the overline. If fx(t)g is harmo-
nizable then it admits a representation by a stochastic Fourier measureZ 1

+j2�ftx(t) = e dX(f):
�1

Equivalently, R (t ; t ) admits a representation as the 2D Fourier transformxx 1 2

of the covariance of X(f ): Z Z1 1
+j2�ff t �f t1 1 2 2R (t ; t ) = e dS (f ; f );xx 1 2 xx 1 2

�1 �1

where S (f ; f ) = E[X(f )X(f )]. If fx(t)g is wide-sense stationary (WSS)xx 1 2 1 2

then it is standard to write

R (t ; t ) = R (t � t ):xx 1 2 xx 1 2

This is equivalent that the 2D spectrum is supported on the main diagonal
in the frequency plane:

S = P (f ) �(f � f );xx xx 1 1 2

where P (f) is the usual power spectrum.xx

Matrix and vector notation is standard: Vectors are bold lower case x

and assumed to be in column form:

x � N � 1;x

where N denotes the number of rows of x. Matrices are upper case A withx

dimensions indicated as
A � M �N:

T HThe matrix transpose is A and the conjugate transpose is A .
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Chapter 2

Time-Varying Channels:

Baseband PMFS

The communication literature uses two basic channel models [39]: the phase-
modulation fading simulator (PMFS) and the quadrature-modulation fading

simulator (QMFS). The PMFS provides a clean analytical model that beau-
tifully illustrates the fundamental channel functions. It also subsumes, via
the theory of harmonizable processes, the QMFS. However, the QMFS per-
mits a more compact and 
exible implementation. This report exploits the
strong points of both models. This chapter uses the PMFS to obtain a clean
and e�cient coverage of channel concepts, statistical issues, and modeling
techniques. The next chapter uses this groundwork for a rapid treatment of
the QMFS which is used for the simulations.

An end-to-end wireless channel simulation requires that the channel model
be imbedded between a simulated transmitter and receiver. There are two
approaches to simulate such a wireless setup on a computer [91]: Either a
passband simulation or a baseband simulation. The passband simulation in-
cludes the high-frequency modulation and requires a correspondingly high
sample rate. The baseband simulation needs only to model at the symbol
rate but requires assumptions about the passband processing. This report
uses baseband simulation. We make explicit the modeling assumptions. Fig-
ure 2.1 illustrates the setup for a baseband simulation. A complex sequence
fs g is to be transmitted. In the \D/A" block, fs g modulates a sequence ofk k

impulses that are then �ltered by the transmitter's pulse-shaping �lter p (t).T

8



The baseband transmission is then
1X

s(t) = s p (t� kT ):k T

k=�1

After passing through the baseband time-varying channel, the signal at the
receiver's antenna e(t) is corrupted by additive noise f�(t)g, and matched by
the receiver's �lter p (t). The baseband signal at the input of the receiver'sR

A/D is
y(t) = p � e(t) + p � �(t):R R

After sampling, the received sequence fy(t )g will then be used for channelm

estimation in the subsequent chapters. For now, we focus on modeling the
channel in the context of this digital baseband simulation.

pT
- - -fs g D/A s(t)k shaping

?

time-variant
channel

?

pR additive
��A/D�fy(t )gm matching noise

Figure 2.1: Block diagram of the baseband transmitter, time-varying channel,
and receiver

Section 2.1 reviews the basic channel functions. Section 2.2 treats the
PMFS and introduces a model for the delay and Doppler. Section 2.3 shows
how the channel functions and their covariances explicitly reveal the delay
and Doppler model. Because delay and Doppler \spreads" are important
for estimating system performance, recent results on these channel statistics
are covered in Section 2.4. The preceding developments are gathered in an
implementation for use in the subsequent chapters. Section 2.5 presents the
necessary assumptions for a linear baseband model of a PMFS. Section 2.6
\digitizes" the baseband model for a digital PMFS. Section 2.7 presents the
resulting digital channel functions.

9



2.1 Channel Functions

Bello's seminal 1963 paper established the nomenclature and analysis for
stochastic time-variant linear channels [3]. The kernel system is based on the
Time-Variant Impulse Response K (t; � ) mapping an input s(t) to an output1

e(t): Z 1

e(t) = K (t; � )s(� ) d�:1
�1

This kernel admits a straight-forward correspondence with matrix operators
and an immediate time-to-frequency conversion using the Fourier transform.
However, Bello observed that these kernels \do not readily allow one to grasp
by inspection the way in which the time-variant �lter a�ects input signals to
produce output signals." He introduces the following four channel functions

1via a simple change of basis. The Fourier transform links between each
channel function are illustrated in Figure 2.2.

Input Delay-Spread Function [3, Eq. 9]

h(t; � ) = K (t; t� �)1

with output [3, Eq. 8]

Z 1

e(t) = h(t; t� �)s(� )d�:
�1

This \leads to a physical picture of the channel as a continuum of
nonmoving scintillating scatterers" [3].

Delay-Doppler-Spread Function [3, Eq. 28]

Z 1
�j2�ftU(f; �) = e h(t; � )dt

�1

with output [3, Eq. 29]

Z Z1 1
+j2�fte(t) = U (f; � )e s(t� � )d�df:

�1 �1

1This change of basis rotates the diagonal supports due to each re
ector in K (t; � )1

into vertical supports in h(t; � ). This permits separability of the delay and Doppler.
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Input Delay
Spread Function

h(t; � )
X�
X�
X�
X�
X�
X�
X�
X�
X�
Xz�9

Delay-Doppler Time-Variant
Spread Function Transfer Function

T (t; f)U(f; �)
X �
X �
X �
X �
X �
X �
X �
X �
X �
Xz �9

Output Doppler
Spread Function

H(f; �)

Figure 2.2: Fourier transform mappings between the channel functions (From
Bello [1963])

Time-Variant Transfer Function [3, Eq. 18]Z 1
�j2�f�T (t; f ) = e h(t; � )d�

�1

with output [3, Eq. 19] Z 1
+j2�ftbe(t) = T (t; f)e s(f)df:

�1

Output Doppler-Spread Function [3, Eq. 36]Z Z1 1
�j2�fft+��gH(f; �) = e h(t; � )dtd�

�1 �1

with output [3, Eq. 14] Z 1b be(f ) = H(f; �)s(f � �)d�:
�1

With each channel function, Bello associates the corresponding covari-
ance. Under various assumptions on the channel, these covariance functions
admit simple forms. For example, we will see that the covariance of the
Delay-Doppler-Spread Function under WSSUS assumptions takes the form:

0 0 0 00 0R (f; � ; f ; � ) = E[U(�; f)U(� ; f )] = P (f; � ) �(f � f )�(� � � );UU

where P (f; � ) is called the scattering function. So which covariance func-
tion to use? The answer depends on the channel | certain channel statistics
become wonderfully transparent when viewed with the right covariance func-
tion. For this reason, we turn to our channel models and then analyze them
using a covariance function best suited for the model.
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2.2 Phase-Modulation Fading Simulator

Hoeher [39] and Sandell & Edell [72] model a channel as a phase-modulation
fading simulator (PMFS):

NX1 +j2�f tnph(t; � ) = a e �(� � � ): (2:1)n n
N n=1

Thus, the signal received at the antenna e(t) is determined from the trans-
mitted signal s(t) as:

Z 1

e(t) = h(t; �)s(t� � )d�
�1

NX1 +j2�f tnp= a e s(t� � ):n n
N n=1

Thus, e(t) follows Bello's observations in Section 2.1 | that the Input Delay-
Spread Function h(t; �) models a collection of re
ectors where each re
ector
delays and Doppler shifts the signal. We will see that the PMFS is a general
channel model that subsumes several channel models with appropriate statis-
tical assumptions. It also admits a particularly straight-forward covariance
analysis. These topics will be explored in Sections 2.3 and 2.4. However,
any implementation of the PMFS requires explicit consideration of egodicity
for practical use. This is tackled in later sections. The baseline assumptions
invoked for the PMFS are from Hoeher and made explicit as follows [39]:

PMFS-1 The (a ; f ; � )'s are IID.n n n

PMFS-2 The a 's have zero mean.n

PMFS-3 The a 's are independent from the f 's and the � 's.n n n

PMFS-1 makes explicit that there exists a density p (a; f; � ). PMFS-2a;f;�

\uncorrelates" each path that endows the PMFS with strong stationarity
properties. PMFS-3 separates the density p (a) of the a 's from the Dopplera n

and delay:
p (a; f; �) = p (a)p (f; � ):a;f;� a f;�

12



The Delay-Doppler Spread Function takes the elegant form showing that the
signal is \spread" in time and frequency:

NX1pU(f; � ) = a �(f � f )�(� � � ): (2:2)n n n
N n=1

Assumptions PMFS-1, PMFS-2, and PMFS-3 make U(f; �) a generalized
random �eld. Handy computational tricks for generalized random processes
and �elds are given in Appendix A. With these tools, it is immediate that
both E[h(t; � )] and E[U(f; � )] are zero and

0 0 0 0R (f; � ; f ; � ) = E[U (f; � )U(f ; � )]UU

N NX X1 0 0
0 0 0= E[a a ]E[�(f � f )�(� � � )�(f � f )�(� � � )]n n n n n n

N
0n=1 n =1

NX1 2 0 0= � �(f � f)�(� � �)p (f; � )f;�aN n=1

2 0 0= � p (f; � )�(f � f )�(� � � ): (2.3)f;�a

Thus, the PMFS gives a straight-forward derivation that the scattering func-
tion is proportional to the probability distribution of the Doppler and delays.

2.3 Covariance Functions

For the purpose of comparing the covariance functions, we will make the ad-
ditional assumption that the Doppler and delays are independent. Formally,

PMFS-4 The f 's and the � 's are independent.n n

This is equivalent that the probability distribution p (f; � ) is separable:f;�

p (f; � ) = p (f)p (� ):f;� f �

Then the covariance of the Input Delay-Spread Function is

0 0 2 0 0cR (t; � ; t ; � ) = � p (t� t )p (� )�(� � � )hh f �a
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and is called the tap-gain correlation function [81], the path-gain correla-
tion function [5], or the space-time cross-covariance [77]. The Time-Variant
Transfer Function is

NX1 +j2�f t �j2�f�n npT (t; f) = a e en
N n=1

with covariance

�10 0 2 0 0c cR (t; f ; t ; f ) = � p (t� t )p (f � f )TT f �a

called the time-frequency correlation function [81], [5], the spaced-frequency,
spaced-time correlation function [63], or the frequency-time cross-variance
[77]. The Output Doppler-Spread Function is

NX1 �j2���npH(f; �) = a �(f � f )en n
N n=1

with covariance

�10 0 2 0 0cR (f; �; f ; � ) = � p (f � f )p (� � � ):HH f �a

The simple forms of the covariance functions are due to Bello's adroit change
of variables and his Fourier transform relations.

So what is the e�ect of the channel on the signal? More precisely, how
does the delay-Doppler density p (f; � ) a�ect e(t)? The answer dependsf;�

on the signal s(t) and what \ensemble" information we have. When we
have access to the expectation operator, the following result is obtained for
a stochastic signal.

Lemma 2.3.1 Assume PMFS-1, PMFS-2, and PMFS-3 hold. Assume fs(t)g
is a strongly harmonizable signal independent of the channel. Then the re-
ceived signal

NX1 +j2�f tnpe(t) = a e s(t� � )n n
N n=1

is also strongly harmonizable with stochastic Fourier representation

NX1 �j2�f�nb bpe(f) = a e s(f � f ):n n
N n=1
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Its covariance is Z Z1 1
2 +j2�fft �t g1 2R (t ; t ) = � e R (t � �; t � � )dp (f; � ):ee 1 2 ss 1 2 f;�a

�1 �1

Its two-dimensional (2D) spectrum is

Z Z1 1
2 +j2�ff �f g�1 2R (f ; f ) = � e S (f � f; f � f)dp (f; � );êê 1 2 ss 1 2 f;�a

�1 �1

where S (f ; f ) denotes the 2D spectrum of fs(t)g. If fs(t)g is WSS thenss 1 2

fe(t)g is also WSS with covariance

�12cR (t ; t ) = � p (t � t )R (t � t )ee 1 2 f 1 2 ss 1 2a

and spectrum
2R (f ; f ) = � p � P (f )�(f � f );êê 1 2 f ss 1 1 2a

where P (f) denotes the power spectrum of fs(t)g.ss

Lemma 2.3.1 shows that the Doppler density alone a�ects a WSS signal |
the delay density has no e�ect | on the average. This phenomenon will be
present in the other channel models. It is due to the WSS assumption of the
signal or, more generally, that we have access to the ensembles of the signal
and channel. In practice, we will only have the result of passing a signal
through a single realization of the channel. The next result is more in line
with this information limit.

Lemma 2.3.2 Assume PMFS-1, PMFS-2, and PMFS-3 hold. Assume s(t)
2 1deterministic with s 2 L (IR) \ L (IR). Then the received signal fe(t)g is

strongly harmonizable with

2 2 2E[je(t)j ] = � jsj � p (t)�a

and
2 2 2b bE[je(f)j ] = � jsj � p (f ):fa

Lemma 2.3.2 shows that a deterministic input gives a stochastic output whose
second moments are governed by the distribution of the delays and Doppler.
Because of the practical importance of this delay and Doppler \spread",
recent results on these estimates are covered in the next section.
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2.4 Delay & Doppler Spread

The delay and Doppler \spread" | the second moments of p (f; � ) | aref;�

useful for characterizing wireless system performance [61, page 184{185], [85].
Not surprisingly, applications have given rise to competing nomenclatures
and \rules-of-thumb" for system design. In contrast, recent work by Fleury
provides an excellent synthesis of theory and applications [25], [26], [24].
Therefore, Fleury's approach to the delay and Doppler spread is reviewed
here and applied in the subsequent simulations.

There are four functions to discuss: the marginals of the delay and
�1c cDoppler p (�), p (f) and their Fourier transforms p (� ), p (f ). Each� f f �

function has a \spread" that satis�es an uncertainty relation with its Fourier
transform. The trick is to de�ne the spread. Table 2.1 summarizes the nec-
essary notation. Also needed is the notion of a coherence interval. If R(x) is
a covariance function, then the coherence interval at level c [25]:

D [R] = inffx : jR(x)j < cR(0)g:c

Table 2.1: Delay and Doppler Nomenclature

Symbol Description

p (�) power delay pro�le [60], multipath intensity�

pro�le [63, page 762], delay scattering function [25]
� = E[� ] mean delay [93, page 129], mean excess delay [60]�

2 1=2� = E[(� � � ) ] delay spread [60], [25]� �

T multipath spread [63, page 763], [49]Mcp (f ) frequency correlation function [25]� cD [p ] coherence bandwidth at level c [25]c �

p (f) Doppler scattering function [25]f

� = E[f ] mean Dopplerf
2 1=2� = E[(f � � ) ] Doppler spread [25]f f

B Doppler spread [63, page 765], [85]D
�1cp (�) time correlation function [25]f

�1cD [p ] coherence time at level c [25]c f
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Remarks: (i) Bello uses [4]: T = 2� and B = 2� . (ii) A rule of thumbM � D f

[60]: A channel can be considered 
at when � =T is less than 0.1. (iii)�

Limited bandwidth may be overcome by using a Prony algorithm [45].

Applications: The value of knowing these spreads is given by Stein with
immediate applications to our PN processing [85]: \to process a symbol
waveform with a �lter matched to the waveform as transmitted, two sep-
arate criteria must be satis�ed: one, that there be essentially no loss of
coherence as received [T � 1=B ]; the other, that there be essentially noD

frequency-selective distortion of the symbol [T � T ]; this leads to theM

double inequality T � T � 1=B ".M D

Theory: Fleury's uncertainty relation part of the general moment theory of
covariance functions [24]. We adapt the following special case from [25].

Theorem 2.4.1 Let p denote a probability measure on IR with characteristic

function Z 1
�1 +j2�xybp (x) = e dp(y):

�1

Assume p has a �nite second moment:Z 1
2 2E[y ] = y dp(y) <1:

�1

2 2Then the variance exists: � = E[(y � E[y]) ]. De�ney

�1 �1b bD [p ] = inffx : jp (x)j < cg:c

Then for all c 2 [0; 1]
arccos(c)�1b� D [p ] � :y c

2�

Example 2.4.1 (Exponential Delay) A common model for the delay pro-
�le is [93, page 130]

1 ��=��p (� ) = 1 (� ) e :� [0;1)
��

Then the frequency correlation function is

1cp (f ) = ;�
1 + j2�f��
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so that p1
�2cD [p ] = c � 1:c �

2���cIt can be veri�ed that � D [p ] satis�es the inequality of Theorem 2.4.1 for� c �

c 2 [0; 1]. Figure 2.3 illustrates the uncertainty relation from Theorem 2.4.1.
2

-c cp (f) D [p ]� c �
@

6 arccos(c)@@
2���

- �p (�) �� �

Figure 2.3: Uncertainty relation for the delay spread � and the coherence�cbandwidth D [p ].c �

Example 2.4.2 (Gaussian Doppler) A model for the Doppler scattering
function is [6]

2 21 �f =2�
fpp (f ) = e :f

2��f

Then the time correlation function is

�1 2cp (�) = exp(�2(�� � ) );f f

so that q1�1cD [p ] = � log(c)=2:c f
��f

�1cAgain, it can be veri�ed that � D [p ] satis�es the inequality of Theo-f c f

rem 2.4.1 for c 2 [0; 1]. Figure 2.4 illustrates the uncertainty relation from
Theorem 2.4.1. 2

Measurements: Fleury [25], [26] presents an impressive scatter plot of mea-csured delay spread versus coherence bandwidth (� ;D [p ]) closely bounded� 0:5 �

by the theoretical hyperbola �D � arccos(0:5)=2�. What is also impressive
is Fleury's veri�cation of empirical approximations of Gans' \1/8 rule" for
c=3/4 [28]. Fleury obtains [25]

1c� D [p ] � :� 3=4 �
8:694
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-p (f) �f f
@

6 arccos(c)@@
2���

�1 �1- �c cp (�) D [p ]cf f

Figure 2.4: Uncertainty relation for the Doppler spread � and the coherencef
�1ctime D [p ].c f

No measurements assessing the theory for Doppler spread versus time cor-
�1crelation (� ;D [p ]) have been located to date. No work taking this samef c f

approach to the joint distribution p (f; � ) has been found. Measurementsf;�

have been made that show the variations in the measured delay pro�les are
log-normal [79]. No work exploiting such a priori models for improving the
estimates of the delay pro�le have been found.

2.5 Baseband PMFS

The preceding sections covered the PMFS and the channel functions. The
remainder of this chapter will put these concepts in the context of a baseband
simulation as illustrated in Figure 2.1. Start with the following assumptions:

B-1: Linear Modulation The signal s (t) transmitted at RF is obtainedRF

from the baseband signal s(t) as

+j2�f tcs (t) = e s(t):RF

B-2: Linear Demodulation The received baseband signal e(t) is demod-
ulated from the RF signal asZ 1

0�j2�f tce(t) = e h (t; � )s (t� � )d�;RF RF
�1

where h (t; � ) denotes the RF Input Delay-Spread function.RF

B-3: Perfect Synchronization The receiver and transmitter operate from
a master clock.

Both B-1 and B-2 require that the modulation be linear in both the transmit-
ter and receiver. See Felhauer [21], [22], [23] for processing that can handle

19



0non-linearities in the ampli�ers. For brevity, set �f = f � f . Then B-1,c c

B-2, and Equation 2.1 give the baseband PMFS as

+j2��ft �j2�f �ch(t; � ) = e h (t; � )eRF

N n oX1 �j2�f � +j2�f�f+f gtc n np= a e e �(� � � ): (2.4)n n
N n=1

That is, the a 's are rotated and the Doppler frequencies are shifted but then

form of the phase-modulation fading simulator is unchanged. Assumptions
B-1, B-2, and B-3 are fundamental to any baseband simulation. To go further
requires a model of the receiver.

2.6 Digital Baseband PMFS

Following [58] and [40], the baseband channel input has the complex baseband
form

1X
s(t) = s p (t� kT ): (2:5)k T

k=�1

B-1 and B-2 give the baseband antenna input asZ 1

e(t) = h(t; � )s(t� � )d�:
�1

The baseband receiver input is [93, Eq. 8.3]

x(t) = e(t) + �(t); (2:6)

where f�(t)g is a complex-valued, zero-mean, Gaussian random process with
spectrum determined by the IF �lter. We assume the receiver �lter p (t) isR

matched to the transmitter �lter p (t):T

B-4 Matched Filter The convolution of the transmitter �lter p (t) andT

the receiver �lter p (t) is the raised cosine �lter [64, pages 63{65]:R

p � p (t) = x (t).R T RC

With the baseband channel given by Equation 2.1 and the baseband signal
given by Equation 2.5, the baseband input to the receiver's detector due to
the signal is ZN 1 1X X1 +j2�f ft�ugnpp � e(t) = s a p (u)e p (t� u� � � kT ) du:R k n R T n

�1N n=1 k=�1
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To numerically implement such integrals, we invoke a slow-fading assumption:

B-5 Slow Fading The distribution of the f 's are \small" with respect ton

the bandwidth of the receiver �lter p (t).R

Appendix B shows that B-4 and B-5 give the approximation:Z 1
+j2�f ft�ugnp (u)e p (t� u) duR T

�1 Z 1
+j2�f tn� e p (u)p (t� u) duR T

�1

+j2�f tn= e x (t)RC

2with a mean-square error bounded by 6f T . Typical values for this reportn
�6are T � 10 seconds and jf j < 25 Hertz. Thus, the approximation errorn

| for each pulse | is deemed negligible. By B-3, synchronized sampling
is possible. That is, the receiver may sample y(t) at instants t = mT=O ,m s

where O denotes the oversampling factor. A typical value is O = 2. Thens s

the detector input is well approximated as:

y(t ) = p � e(t) + p � �(t)jm R R t=tm

1 NX X1 +j2�f tn mp� e a x (t � kT � � )sn RC m n k
N n=1k=�1

+ p � �(t ): (2.7)R m

This is the foundational equation for the PMFS. It will be implemented in
the simulations and used to de�ne the digital channel functions. The digital
channel functions are the discrete analogs of the continuous channel func-
tions. However, the mismatch between the sampling rate O =T and the sym-s

bol rate 1=T prevents an immediate correspondence between the continuous
convolution and the discrete convolution. There are two approaches to work
around this mismatch: (i) Zero-�ll the input sequence fs g; (ii) Vectorizek

the output. This chapter zero-�lls while vectorization is naturally discussed
in the subspace methods.

The problem is to write Equation 2.7 using a digital convolution. To do
this, zero-�ll fs g ask (

s rem(l; O ) = 0l=O sses = : (2:8)l 0 otherwise
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eSet T = T=O . Then the business part of Equation 2.7 may be written ass

the discrete convolution

1 NX X1 e+j2�f mTn e epe(t ) � e a x (kT � � )sm n RC n m�k
N n=1k=�1
1X e= h (m; k)s ;B m�k

k=�1

where h (m; k) denotes (an approximation to) the baseband digital InputB

Delay-Spread Function:

NX1 e+j2�f mTe e n eph (m; k) = h � x (mT ; kT ) = a e x (kT � � ): (2:9)B � RC n RC n
N n=1

Approximation and Convolution: Appendix B shows that h (m; k) is anB

approximation obtained by commuting a multiplication and a convolution
operator. This form of h (m; k) permits a straight-forward MATLAB im-B

plementation using convolution functions.

Sampling: Equation 2.9 reveals the sampling requirements for channel esti-
mation (See Staley [82] for an in-depth treatment of this topic). Resolution ofethe Doppler frequencies requires 1=T > 2max jf j. Resolution of the raised-necosine �lter requires 1=T exceed (1 + �)=T , where � is the rollo� factor [63,
page 553]. Thus, the sampling rate should exceed( )

1 O 1 + �s
= � max ; 2jf j : (2:10)ne T TT

2.7 Digital Channel Functions

We have access to only the digital channel functions but want to estimate
the continuous channel functions. Therefore, we seek the relation between
the two classes of channel functions. This section computes the digital Input
Delay-Doppler function U (f; k) and its covariance. Start from the digitalB

Input Delay-Spread function h (m; k) of Equation 2.9. Apply the FourierB
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transform along the columns to obtain the digital Input Delay-Doppler func-
tion:

1X e�j2�fmTU (f; k) = e h (m; k)B B

m=�1

NX1 ep= a �(f � f )x (kT � � ):n n RC n
N n=1

Then U (f; k) is related to U(f; �) by the convolution along the delay:B

U (f; k) = U � x (f; kT ):B � RC

This result and Equation 2.3 show that the covariance of the digital Input
Delay-Doppler function is the covariance of the Input Delay-Doppler function
observed through the raised cosine �lter:

0 0 0 0R (f; k; f ; k ) = E[U (f; k)U (f ; k )]U U B BB B Z
1

0 0e e= �(f � f ) x (kT � � )x (k T � �)p (�; f)d�:RC RC �;f
�1

With the standard abuse of notation, the digital scattering function is related
to the scattering function as:

Z
1

2 2 eE[jU (f; k)j ] = x (kT � �)p (�; f)d�B �;fRC
�1

2 e= x � p (kT ; f): (2.11)� �;fRC

The right-hand side Equation 2.11 is the true scattering function convolved
with the raised-cosine pulse. This implies any estimation scheme for digitial
scattering function can be \boosted" by exploiting this convolution structure.
In this regard, David Thompson's approach for spectral estimation should
apply for estimating the channel and scattering functions [88]. The left-
hand side of Equation 2.11 requires the expectation operator or access to the
ensemble. This impossibility for real-world measurements is either evaded or
ignored in the literature. In rare cases, egodicity is invoked. That is, time
averages can approximate the ensemble averages. Unfortunately, the PMFS
does not have this critical ergodic property. This defect is the topic of the
next section.
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2.8 PMFS Simulation Issues

There are issues for the simulation of a PMFS that need to be discussed apart
from actual channel estimation problems. For concreteness, we start with
an implementation of a baseband PMFS and then move to the simulation
issues. The PMFS simulation is built around the digital baseband Input
Delay-Spread function h (m; k) of Equation 2.9. Assumptions B-1, B-2, B-B

3, B-4, and B-5 are in force.

Transmit Sequence: The following MATLAB fragment generates the se-
quence fs g of length K to be pushed through the channel. Chapter 5k

discusses PN sequences and the call to pn src(9,1041,K,1) generating K

samples of the CCITT 0.153 standard 511 PN sequence.

% Generate the PN sequence

K = input('Enter the number of symbols <128>: ');

if isempty(K); K = 128; end

s = pn_src(9,1041,K,1);

eZero-Fill: This sequence is zero-�lled to give fs g for convolution processingk

(Section 2.6).

% Generate zero-filled PN sequence for convolution

Os = input('Enter the oversample factor <2>: ' );

if isempty(Os); Os = 2; end

sExt = [s zeros(K,Os-1)].';

sExt = sExt(:);

Channel and Receiver Times: We will need two time vectors: The �rst is tC
which is the extent of the channel delays or the k's. Here the extent is the
time interval [0; KT ]. The second is tR which is the extent of the receiver or
the m's. Here the extent is the time interval [0;MT=O ].s

% 2.3 Generate the time vectors

tC = (T/Os)*([1:(K*Os)]-1).'; % Channel's time extent

NtC = length(tC);

M = length(tC) + length(sExt) - 1; % Receiver's time extent

tR = (T/Os)*([1:M]-1).';
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PMFS Parameters: The delay for each path is drawn from the uniform
distribution U [0; KT ] for the extent of the channel: � � U [0; KT ]. Then

Doppler frequency for each path is drawn from the Gaussian distribution:
2f � N (0; � ). Thus, the scattering function is proportional to p (f; �) =n f;�f

2N (0; � )� U [0; KT ].f

% Phase-Modulation Fading Simulator: Paths not scaled by sqrt(N)

N = input('Enter the number of paths <3>: ' );

if isempty(N); N = 3; end

a = exp( +j*2*pi*rand(N,1) ); % Uniform Phases

tau = rand(N,1)*K*T; % Uniform Time Delays (sec)

fD = randn(N,1)*10 % Gaussian Doppler (Hertz)

Transmission through the PMFS: The zero-�lled sequence is pushed through
each path. Here rcosplt(t,T,beta) is a function call to the raised cosine
�lter x (t). A loop is used to save memory.RC

y = zeros(M,1);

for n=1:N

y = y + a(n)*exp(+j*2*pi*fD(n)*tR) ...

.*conv2(rcosplt(tC-tau(n),T,beta),sExt);

end

Additive Noise: Equation 2.7 shows the additive noise is colored by the
square-root raised cosine �lter. The call to srcnoise(M,Os,T,beta) returns
a complex-valued, zero-mean, unit variance, Gaussian time series with the
square-root raised cosine power spectrum. The SNR we use is the ratio of
the minimum peak value of the matched pulses to the variance of the noise.

2minfjs x (0)j g 1k RC
SNR = = : (2:12)

2 2� �� �

% Channel Noise: Scaled at the receiver

SNR_dB = input('Enter SNR <20 dB>: ');

if isempty(SNR_dB); SNR_dB = 20; end

SNR = 10^(SNR_dB/10);

nu = srcnoise(M,Os,T,beta);
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% Detector input: Unit variance noise is scaled to the SNR

y = y + nu/sqrt(SNR);

This completes the treatment of the PMFS and an elementary MATLAB
implementation. What are the statistical issues? That is, the preceding
implementation of the PMFS \rolls the dice" to draw N samples of the
(a ; f ; � )'s. Once these channel parameters are selected, they are held con-n n n

stant over the simulation. The consequences of this approach are addressed
next:

How many paths N? Hoeher avoids this issue by claiming the PMFS is
an approximation to the limiting case as N ! 1 but for simulations used
N = 500 with no justi�cation [39]. He does state [39] \for small N , it is
advisable to compute new random variables [the (a ; f ; � )'s] from time-n n n

to-time, because this improves the statistic." Mathematically, Hoeher is
attempting to estimate the probability density p (f; � ) from N samplesf;�

(f ; � ). The number of samples and the shape of the density determine then n

accuracy of the estimated density. Indeed, the 1979 paper by Hashemi [36]
attacks this very problem by modeling the number of paths in each time bin.
This \packing of the paths" in each time gives a proper statistical counting
for estimating the delay density p (� ). Also, recent results from Multivariate�

Density Estimation provide asymptotic estimates of this \histogram" error
[78]. However, it is beyond the scope of this e�ort to push either theory
through to obtain such a \patch" to the PMFS. More critical issues await as
hinted by Hoeher's recommendation to draw a new channel from \time-to-
time."

What are the ergodic properties of the PMFS? Hoeher makes the claim that
[39] \[T]he realization of the random process has to be computed before
the simulation starts. It contains, on the average, the same statistics as
any other realization of possible outcomes because of ergodicity." A classic
result is that the Time-Variant Transfer function T (f; t) is mean ergodic
but not correlation ergodic [68]. Speci�cally, it is impossible to get that the
a 's are uncorrelated from a single random draw. Consequently, Hoeher'sn

recommendation that new channels be drawn from \time-to-time" is not an
o�-hand remark but absolutely critical | the user must have an ensemble of
channels for the estimation of second-order statistics. But if a new channel
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is to be drawn from \time-to-time", should not the re
ectors evolve in a
physically plausible sense? More generally, the question to ask is:

How well does the PMFS model the time-evolution of the channel? Because
we are going to be drawing a new channel from \time-to-time", there arise
the mundane questions on the speed of the update: Does it make physical
sense to update a channel between every sounding pulse? Should we update
during a sounding? More problematic is updating the channel while running
a \Kalman �lter" channel estimation scheme. That is, a channel estimate is
based on the previous channel estimate and new observations. For a credi-
ble simulation, the channel parameters should evolve according to a proper
physical model. Hoeher's simple random draw model implies that the chan-
nel parameters are independent between soundings. So a physically plausible
argument is needed to establish the time gap between observations.

The preceding remarks demonstrate that the PMFS has non-trivial im-
plementation problems. It goes without saying that the hapless reader who
has gotten this far will question the worth of the PMFS. The value of the
PMFS is that it provides a simple and elegant treatment of the channel func-
tions and their covariances. The problems with the implementation of the
PMFS are non-trivial but are overcome by the QMFS discussed in the next
chapter.
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Chapter 3

Time-Varying Channels:

Baseband QMFS

The preceding chapter used the phase-modulation fading simulator for rapid
access to the channel functions, digital channel functions, and simulations.
This chapter uses these developments for a quick review of the quadrature-
modulation fading simulator (QMFS), its channel functions, their covari-
ances, the digital QMFS, and a QMFS simulation.

3.1 Quadrature-Modulation Fading Simula-
tor (QMFS)

North & Zeidler [59], Crohn & Bonek [14], Proakis & Salehi [65, pages 697{
703] model a channel with the quadrature modulation fading simulator:

NX
h(t; �) = a (t)�(� � � ): (3:1)n n

n=1

Typically, the fa (t)g's are complex-valued, jointly wide-sense stationaryn

(JWSS), uncorrelated Gaussian random processes with mean and spectral
shape determined by the propagation environment (See Chapter 4). The
channel of Equation 3.1 acts on an input signal as

Z N1 X
e(t) = h(t; � )s(t� � )d� = a (t)s(t� � ):n n

�1 n=1
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3.2 Channel Functions

The Delay-Doppler Spread function is

NXcU(f; � ) = a (f)�(� � � ): (3:2)n n

n=1

The Time-Variant transfer function is

NX
�j2�f�nT (t; f ) = a (t)e :n

n=1

The Output Doppler-Spread function is

NX
�j2���ncH(f; �) = a (f)e :n

n=1

3.3 Covariance Functions

2Section 2.2 showed that the scattering function P (f; � ) = E[jU(f; �)j ] was
proportional to the probability density p (f; � ) of the delay and Dopplerf;�

| assuming the PMFS. Given the importance of the scattering function for
characterizing channels from real data (See Chapter 8), it is worthwhile to
ask: How does the scattering function link to p (f; � ) under the QMFS?f;�

The answer depends on the assumptions regarding the delays � 's and then

fading processes fa (t)g's This section works through a few examples for usen

in Chapter 8.

Example 3.3.1 The following list is rigged to give a separable scattering
function:

QMFS-1 The fa (t)g's are JWSS and uncorrelated.n

QMFS-2 The � 's are IID.n

QMFS-3 The � 's are independent from the fa (t)g's.n n
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Then the covariance of the Delay-Doppler-Spread function may be computed
using the tools of Appendix A:

NX
0 0 0 0R (f; � ; f ; � ) = �(f � f )�(� � � ) p (� ) P (f);UU � a an n

n=1

where p (� ) is the density of the delays. Thus, the scattering function P (f; � )�

is separable and given by the product of the delay density p (� ) and the sum�

of the power spectrums of the multiplicative noises. Additional assumptions
bring us to the PMFS results. Suppose the fa (t)g's are narrow-band FMn

processes with identical spectra. Adding the strict-sense stationarities of
Woodward's Theorem [68, page 321-324] permits the approximation:

0 0 0 0R (f; � ; f ; � ) � N �(f � f )�(� � � )p (�)p (f ):UU � f

That is, P (f; � ) registers the delay-Doppler distribution. 2

Example 3.3.2 Applicable to slowly moving or stationary transmitters and
receivers is the following:

QMFS-1 The fa (t)g's are JWSS and uncorrelated.n

QMFS-2 The � 's are �xed.n

Then the covariance of the Delay-Doppler-Spread function is

NX
0 0 0 0R (f; � ; f ; � ) = �(f � f )�(� � � ) P (f )�(� � � ):UU a a nn n

n=1

In contrast to Example 3.3.1, the scattering function P (f; � ) registers the
spectral type at each delay. 2

Example 3.3.3 With more freedom in the delays, we get

QMFS-1 The fa (t)g's are JWSS and uncorrelated.n

QMFS-2 The � 's are independent but not identically distributed.n

QMFS-3 The � 's are independent from the fa (t)g's.n n
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Then
NX

0 0 0 0R (f; � ; f ; � ) = �(f � f )�(� � � ) P (f)p (� ):UU a a �n n n

n=1

That is, each path registers its local delay and Doppler distribution. 2

eFor applications, suppose an estimate P (f; � ) was obtained from real
data. Then Examples 3.3.1, 3.3.2, and 3.3.3, show that an estimate of theepower-delay pro�le p (� ) may be obtained by averaging P (f; �) over fre-�

quency. For the Doppler distribution p (f), the sum of the power spectrumsf

in Example 3.3.1 precludes the association of speci�c spectral types to a
particular delay. Unless the power spectrums are identical, the Doppler dis-
tribution is lost. In contrast, Examples 3.3.2 and 3.3.3 show that each path
registers a local delay and Doppler distribution in P (f; �). Chapter 8 in-
vokes a belief system that permits the converse: Well-separated \blobs" in
P (f; �) register the local delay and Doppler distribution. Thus, the claims
such as \the �rst path is Ricean and the subsequent paths are Rayleigh" can
be tested by the resolvable paths in scattering function estimates. Because
this estimate is obtained from sampled data, Section 3.4 models digital base-
band QMFS. Section 3.5 uses this model to determine the digital channel
functions.

3.4 Digital Baseband QMFS

Assumptions B-1, B-2, B-3, and B-4 from Chapter 2 are in force. Following
[58] and [40], the channel input has the complex baseband form

1X
s(t) = s p (t� kT ):k T

k=�1

Then Assumptions B-1 and B-2 determine the baseband received antenna
input as [93, Eq. 8.3]:

x(t) = e(t) + �(t);

where Z
1

e(t) = h(t; � )s(t� � )d�;
�1

31



and the noise f�(t)g is complex-valued, zero-mean Gaussian with spectrum

at over the width of p (t). Assumption B-4 and h(t; � ) of Equation 3.1 giveR

the input to the receiver's detector as

y(t) = p � x(t)R Z Z1 1 1X
= s p (�)h(t� �; t� � � � )p (� � kT )d�d� + p � �(t)k R T R

�1 �1
k=�1 ZN 1 1X X

= s p (�)a (t� �)p (t� � � � � kT )d� + p � �(t):k R n T n R
�1n=1 k=�1

We modify the slow-fading assumption B-5:

0B-5 Slow Fading The maximal spectral extent f of the fa (t)g's is \small"D n

with respect to the spectral extent of the receiver �lter p (t).R

Mathematically, we claim the following [63]Z
1

p (�)a (t� �)p (t� � � � )d�R n T n
�1 Z

1

� a (t) p (�)p (t� � � � )d�n R T n
�1

= a (t)x (t� � ):n RC n

eBy B-3, synchronized sampling at time instants t = mT is possible. HeremeT = T=O where O is the oversampling factor. Thus, Assumptions B-1,s s
0B-2, B-3, B-4, and B-5 give the approximation to the digital detector input

as:

y(t ) = p � e(t) + p � �(t)jm R R t=tm

1 NX X e e ee� a (mT )x ((m� k)T � � )s + p � �(mT ); (3.3)n RC n k R

n=1k=�1

ewhere fs g denotes the zero-�lled symbol sequence of Equation 2.8. Thisk

is the foundational equation for the QMFS. It is implemented in the simu-
lations. It determines what estimates of the channel functions are possible.
To this end, observe the business part of Equation 3.3 may be written as a
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discrete convolution

1 NX X e e ee(t ) � a (mT )x ((m� k)T � � )sm n RC n k

n=1k=�1

1X e= h (m; k)s :B m�k

k=�1

Thus, the baseband digital Input Delay-Spread function for the QMFS is

NX e eh (m; k) = a (mT )x (kT � � ): (3:4)B n RC n

n=1

Sampling: Equation 3.4 shows the sampling requirements for channel esti-
mation (See Staley [82] for an in-depth treatment of this topic). Resolutioneof the Doppler frequencies requires 1=T > 2f , where f denotes the max-D D

imal spectral extent of the fa (t)g's. Resolution of the raised-cosine �lternerequires 1=T exceed (1 + �)=T , where � denotes the rollo� factor [63, page
553]. Thus, the sampling rate should exceed( )

1 O 1 + �s
= � max ; 2f : (3:5)De T TT

3.5 Digital Channel Functions

At best, we will only have the digital channel functions in our hands but want
the continuous channel functions and their covariances. This section uses
the digital Input Delay-Spread function h (m; k) to estimate the scatteringB

function. Apply the Fourier transform along the columns of Equation 3.4 to
get the digital Delay-Doppler function

1X e�j2�fmTU (f; k) = e h (m; k)B B

m=�1

N 1X X e�j2�fmTe e= x (kT � � ) e a (mT )RC n n

m=�1n=1

NX e b= x (kT � � )a (f):RC n n

n=1

33



The last equality follows from the sampling requirements of Equation 3.5.
Comparing with U(f; � ) in Equation 3.2, this result shows that U (f; k) isB

smeared by the raised cosine �lter:

eU (f; k) = x � U(f; kT ):B RC �

Its covariance is likewise smeared by a 2D raised cosine �lter:

0 0 0 0R (f; k; f ; k ) = E[U (f; k)U (f ; k )]U U B BB B

N NX X
0 0e e 0b b= x (kT � � )x (k T � � )E[a (f)a (f )]RC n RC n nn

0n=1 n =1

NX
0 0e e= x (kT � � )x (k T � � )P (f)�(f � f )RC n RC n a an n

n=1

0 0e e= x 
 x � �R (f; kT ; f ; k T ):RC RC UU

3.6 QMFS Simulation Issues

The QMFS simulation is built around the digital baseband Input Delay-
Spread function h (m; k) of Equation 3.1. Assumptions B-1, B-2, B-3, B-4,B

0and B-5 are in force. For simplicity, only two paths are used.

Transmit Sequence: The following MATLAB fragment generates a PN se-
quence fs g of length K to be pushed through the channel. Chapter 5 dis-k

cusses PN sequences.

% RF setup

Rb = 4*64.e+003; % Symbol Rate (bits/sec)

T = 1/Rb; % Symbol Duration (sec)

beta = 0.5; % Rolloff factor

% Generate PN sequence

K = input('Enter the number of symbols <128>: ');

if isempty(K); K = 128; end

s = pn_src(9,1041,1024,1);

s = s( 512 + [1:K] );
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eZero-Fill: This sequence is zero-�lled to give fs g for convolution processingk

(Section 2.6).

% Generate zero-filled PN sequence for convolution

Os = input('Enter the oversample factor <2>: ' );

if isempty(Os); Os = 2; end

sExt = [s zeros(K,Os-1)].';

sExt = sExt(:);

Channel and Receiver Times: We will need two time vectors: The �rst is tC
which is the extent of the channel delays or the k's. Here the extent is the
time interval [0; KT ]. The second is tR which is the extent of the receiver or
the m's. Here the extent is the time interval [0;MT=O ].s

% Generate the time vectors

tC = (T/Os)*([1:(K*Os)]-1).'; % Channel's time extent

NtC = length(tC);

M = length(tC) + length(sExt) - 1; % Receiver's time extent

tR = (T/Os)*([1:M]-1).';

QMFS Parameters: Two fading paths are simulated. Their delays � and �1 2

are listed in tau. Both fa (t)g and fa (t)g are generated by fade01 discussed1 2

in Chapter 4. This function simulators a complex-valued, zero-mean, unit
variance, Gaussian time series. Its power spectrum is Gaussian-shaped with
equivalent with the maximal Doppler f .D

% QMFS: Fading

tau = K*T[ 0.1; 0.3]; % Time Delays (sec)

fD = [10; 10] % Gaussian Doppler (Hertz)

N = length(tau); % Number of paths

for n=1:N

a(:,n) = fade01(M,fD(n),Rb);

end

a = detrend(a,0);

Transmission through the QMFS: The zero-�lled sequence is pushed through
each path. Here rcosplt(t,T,beta) is a function call to the raised cosine
�lter x (t). A loop is used to save memory.RC
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y = zeros(M,1);

for n=1:N

y = y + a(:,n) .* conv2(rcosplt(tC-tau(n),T,beta),sExt);

end

Additive Noise: Equation 2.7 shows the additive noise is colored by the
square-root raised cosine �lter. The call to srcnoise(M,Os,T,beta) returns
a complex-valued, zero-mean, unit variance, Gaussian time series with the
square-root raised cosine power spectrum. The SNR we use is the ratio of
the minimum peak value of the matched pulses to the variance of the noise.

2minfjs x (0)j g 1k RC
SNR = = :

2 2� �� �

% Channel Noise: Scaled at the receiver

SNR_dB = input('Enter SNR <20 dB>: ');

if isempty(SNR_dB); SNR_dB = 20; end

SNR = 10^(SNR_dB/10);

nu = srcnoise(M,Os,T,beta);

% Detector input: Unit variance noise is scaled to the SNR

y = y + nu/sqrt(SNR);

This completes the treatment of the QMFS and an elementary MATLAB
implementation. So what else does the user need to be aware of to setup a

QMFS and make channel estimates?

Mean, Variance, & Spectral Shape of fa (t)g: Covered in Chapter 4 forn

selected maritime channels.

Symbol & Fade Rates: The symbol rate must be at least the Nyquist rate of
the fading process [13], [82]:

1
� 2f :D

T

Sequence & Channel Length: Standard estimators typically require at least
as many symbols (length of s) as the channel (length of h). Longer soundings
can reduce the noise and bias for a particular channel estimate but then run
afoul of the time-varying channel.

36



Physical Arguments for selecting PMFS or QMFS: There are two main causes
of fading in a wireless communication channel. First, of importance to mobile
communications, is the fading caused by Doppler. Doppler fading is induced
by changes in the relative path lengths of the multipath components. This
type of fading is most directly described by the PMFS. That is, once the
physical propagation environment is de�ned by the multipath structure given
by the (a ; f ; � )'s, the Doppler frequencies f are caused by the temporaln n n n

deviation of the path lengths from the nominal values � . This fading modeln

describes a collection of stationary but scintillating re
ectors. Once this
environment is de�ned, the fading process develops in a deterministic fashion.

The second cause of fading is the time-varying nature of the propagation
environment. For instance, as a receiver moves, a direct path may become
obstructed and undergo severe di�raction loss or be shadowed completely.
Likewise, a previously shadowed path may contribute signi�cantly to the
�eld if the receiver enters its line of sight. This type of fading also can occur
if the transmitter and receiver are stationary and the propagation medium
itself is varying, such as in an urban environment with automobile tra�c
or in an indoor scenario with moving people. The obstacles causing re
ec-
tion and di�raction are constantly moving. This type of fading process is
more adequately described by the QMFS. This model not only accommo-
dates Doppler-induced fading, but also additional variations in the propaga-
tion environment through the random temporal variation of the fa (t)g's.n

Consequently, the model choice should be determined from the physical RF
environment. A maritime RF environment is the subject of the next chapter.
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Chapter 4

A Surface Scatter Channel

The preceding chapters treated the two basic channel models. Chapter 2
showed that the phase-modulation fading simulator (PMFS) is speci�ed by
the distribution of the Doppler frequencies and the delays. Chapter 3 showed
that the quadrature-modulation fading simulator (QMFS) is speci�ed by
the multiplicative noise fa (t)g and delay � for each path. For practicaln n

use, both models require an analysis of a communications channel to specify
realistic distributions of the delays and Dopplers. This chapter adapts Bello's
surface scatter channel to handle our needs for RF communications over
water as shown in Figure 4.1.

Figure 4.1: The subsystems modeling of the multiplicative noise for a surface
scatter channel. From Bello (1973).
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Bello's surface scatter channel is basic to over-the-water communications
and also handles land mobile communications. It determines the Input Delay-
Spread function h(t; � ) as [48], [8], [53]:q

h(t; � ) = P fL�(� � � ) + ��(� � � ) + g(t)�(� � � )g: (4:1)0 1 2 3

Direct Path: The free-space power P is reviewed in Section 4.2. Additional0

losses on the direct path are modeled by L. The line-of-sight (LOS) simula-
tions take L = 1 although spherical di�raction simulations predict L � 1.
The delay � is the time delay between the transmitter and the receiver.1

Coherent Re
ection: The coherent re
ection coe�cient � models the ampli-
tude and phase modulation when a plane wave is re
ected in the specular
direction. The delay � is determined by the geometry of the transmitter and2

receiver. Both are reviewed in Section 4.3.

Di�use Scatter: The multiplicative noise fg(t)g models the di�use scatter. It
is a zero-mean, complex-valued Gaussian random process with spectral shape
determined by the scattering and antennas. Its variance will be determined
by the surface roughness. These are reviewed in Section 4.4.

Other Forms: This form of h(t; � ) in Equation 4.1 extends to other commu-
nication models. � = 0 is a common model for land-mobile communications
or basic di�raction loss [9]. Loo & Secord [48] extend L to a log-normal
process fL(t)g which models fast fading due to foliage. North [56] extends
L to include multiplicative noise on the direct and specular paths. Bello [6]
remarks that � extends to a phase modulation process f�(t)g to model fast
specular fading.

Receiver Input: The input to the antenna due to the signal isZ
1

e(t) = h(t; �)s(t� � )d�
�1

and is scaled by the antenna gain and cable losses in the receiver's front
end. The additive noise f�(t)g is assumed be Gaussian with a 
at spectrum
over the bandwidth of the receiver's matched �lter p (t). Thus, f�(t)g isR

2 2determined by its variance � . Section 4.1 estimates � from standard RF� �

noise sources.

This chapter is written so that a user can implement the model in Fig-
ure 4.1. To this end, we march through the parameters of Equation 4.1.
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The receiver and transmitter geometry and the 
at-earth propagation give
general formulas for these parameters. These are specialized to a generic
ship-to-shore simulation. Once this simulation is in place, we can ask the
question: How well does this model compare with more sophisticated prop-

agation e�ects? Indeed, some readers might �nd the surface-scatter model
of Figure 4.1 too limiting. The �nal section of this chapter compares the
propagation factor of the 
at-earth model at f =300 MHz over water withc

a well-established PDE code. Both models agree in free space but boundary
e�ects, such as the surface wave over water and local re
ectors, are simply
not included in the simpler 
at-earth model.

4.1 Additive Channel Noise

Figure 4.2 presents a simpli�ed front end of the receiver. The signal at the
antenna e(t) is scaled by the receiver's antenna gain G and cable losses atR

the receiver input. The additive channel noise f�(t)g is attributed to the RF
background and system noise at the receiver input. Thus, the receiver input
is:

x(t) = G e(t)=L + �(t):R cable

Figure 4.2: Receiver front end.

The noise is attributed to the RF background noise and system noise. It is
generally taken to be zero-mean white Gaussian noise with 
at spectrum [73,
236{257], [93, page 310], [8], [89], [17], [87]. By Baseband Assumption B-2,
this channel noise is linearly demodulated, shaped by the receiver's matched
�lter p (t), and then presented to the detector. Thus, the baseband noiseR

f�(t)g is complex-Gaussian with 
at spectrum across the support of p (t).R
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2 2So only the variance � or in-band background noise power P = � is needed�� �

to completely specify f�(t)g. From [44, page 76]

2P = � = kT B; (4:2)� op�

�23 �1 �1where k is Boltzmann's constant (1:38�10 W K Hz ), T denotes theop

e�ective operating temperature (K), and B is the bandwidth of p (t) (Hz).R

Bandwidth B: Baseband Assumption B-4 takes p (t) to be the square-rootR
2craised cosine �lter with roll-o� factor �. In the frequency domain, jp (f)jR

has support in the frequency interval [63, page 546]: �(1 + �)=(2T ). Then
B = (1 + �)=T . Although the 3 dB bandwidth is 1=T , we use the full
frequency interval to measure noise power.

Equivalent Operating Temperature T : The literature on T is extensive andop op

the excellent review by Pritchard [62] is adapted as follows. With respect to
the input to the receiver, a simpli�ed model for a whip antenna is

T = fG T + T g=L + T (1 � 1=L ) + T :op R sky ant cable cable cable rcr

The thermal noise sources are the equivalent temperatures of the antenna
T , the cable T , and the receiver T . The receiver's antenna gain Gant cable rvr R

ampli�es the RF noise from the sky T . Figure 4.3 is adapted from Kimsky

& Muehldorf [44, page 74] and gives T as a function of frequency for RFsky

noise sources.

4.2 Free-Space Path Loss

Basic to propagation is the Friis free-space transmission formula. Mathe-
2matically, we set L = 1, � = 0, and � = 0 in Equation 4.1. Physically, ag

transmitter with input power P and antenna gain G is broadcasting intoT T

free-space at wavelength �. At a distance r, the receiver intercepts the radi-
ated power with antenna gain G equal to the directivity. The ratio of theR

received free-space power P to the transmitted power P is [12], [93, page0 T

68], [9, page 26], [44, page 239]  !2
P �0

G = = G G : (4:3)0 T R
P 4�rT
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Figure 4.3: Sky temperatures T (Kelvins) due to background noise sources.sky

From Kim & Muehldorf (1995).

4.3 The Flat-Terrain Path-Loss Model

Figure 4.4 illustrates the setup for the Flat-Terrain Path Loss Model [93]. A
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transmitter with antenna height h and antenna gain G is separated by dis-T T

tance d from the receiver with antenna height h and antenna gain G . TwoR R

paths are to carry the signal: (i) The direct path which follows the free-space
model. (ii) The coherent or indirect path with re
ection coe�cient � relating
terrain \smoothness" and the wavelength �. A standard factorization for �
is [6], [61, pages 19{22], [93, pages 69{71] [47, page 95{125]

� = � DR: (4:4)0

Divergence: The divergence D is [47, page 98] \equivalent to a purely geo-
metric factor that describes additional spreading of a beam of rays due to
re
ection from a spherical surface" and has values between 0 and 1. A 
at
earth sets D = 1.

Plane Surface Re
ection Coe�cient: � denotes the re
ection coe�cient for0

a plane surface of the same material. For vertical polarization, [47, page 99],
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Figure 4.4: Direct and re
ected path in the Flat-Terrain Path Loss Model.
The grazing angle is denoted by � .g

[9, page 53] q
2� sin(� )� �� cos(� )g gq� = ; (4:5)0
2� sin(� ) + �� cos(� )g g

where the grazing angle is  !
h + hT R

� = arctan ; (4:6)g
d

and � is the complex permittivity of the terrain. Figure 4.5 plots � for sea0

water and vertical polarization as a function of the grazing angle.
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Roughness Coe�cient: The roughness coe�cient R was developed from ex-
perimental observations of Beard, Katz, and Spetner [2], [42], [1] and com-
pares well with other work [47, page 122{125]. We use the modi�ed version
[9, Equation 2.62]

2
�g =2 2R = e I (g =2); (4:7)0

where g is the \electrical roughness parameter" [6]

4��h sin(� )g
g = ; (4:8)

�

and �h denotes the standard deviation of the height 
uctuation of the sur-
face. Parsons [61, page 59] tabulates �h for selected terrains. Long [47, page
50{54] tabulates the (peak-to-peak) wave heights for various sea states and
conveniently relates �h to the various wave-height measurements.

Time Delays: With the speed of propagation given by c, the direct path's
time delay is q

�1 2 2� = c d + (h � h ) : (4:9)1 R T
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Figure 4.5: Magnitude and phase of the re
ection coe�cient � for sea water0
�at 20 C and vertical polarization as a function of the grazing angle � . Hereg

� = 70� j300=�.

The re
ected path's time delay isq
�1 2 2� = c d + (h + h ) : (4:10)
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Phase Delays: For each frequency, the direct and re
ected signals combine
at the receiver. The longer path of the re
ected signal induces a phase delay
�� given by [93, page 70]:

�� = 2�f (� � � ) (4:11)c 2 1

or to avoid subtractive cancellation,

2� 4h hT Tq q�� = :
2 2 2 2� d + (h + h ) + d + (h � h )T R T R

For narrow-band signals, it is standard to approximate the e�ect of the direct
and re
ected paths with a phase delay. Mathematically, the claim is [93]q q

+j��h(t; � ) = P f�(� � � ) + � �(� � � )g � P f1 + � e g�(� � � ):0 1 0 2 0 0 1
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4.4 Multiplicative Noise

This section presents straight-forward implementations of a few well-known
stochastic models for the di�use scattering or the fast fading process fg(t)g.
These models are appropriate for narrow-band systems such as military com-
munication channels. The random processes fg(t)g is typically a narrow-
band Gaussian random process with spectral shape determined by the anten-
nas and multipath and spectral extent determined by the maximum Doppler
frequency f .D

This process arises because the channel between the source and receiver
is time-variant. For example, consider the LOS propagation model in Sec-
tion 4.3. Suppose a ground vehicle is situated in an urban coastal region and
transmitting to a ship or surveillance aircraft. Transmissions from its whip
antenna radiate uniformly in azimuth and strike a number of nearby re
ec-
tors. Some of these re
ectors bounce the signal to the distant ship or aircraft.
The geometry of the vehicle, the re
ectors, and the receivers determine the
multiple paths for the signal to arrive at the receiver. The variable path
lengths induce relative phase delays which may cause signal cancellation [61,
page 111]: \when either the transmitter or the receiver is in motion, we have
a `dynamic multipath' situation in which there is a continuous change in the
electrical length of every propagation path and thus the relative phase shifts
between them change as a function of spatial location . . . the space-selective
fading which exists as a result of multipath propagation is experienced as
time-selective fading by a mobile receiver which travels through the �eld."
Table 4.1 lists M �les which simulate fg(t)g. We make explicit that fade02.m
and fade03.m have been adapted from Richard North's NRaD's Communi-
cation Toolbox [55].

Table 4.1: Narrow-Band Gaussian Processes
M �le R (�) Application Referencesgg

fade01.m Gaussian air-to-air, air-to-satellite [6], [8], [35] [53] [89]
fade02.m Bessel land mobile whip antenna [93, page 150],

[61, page 177]
fade03.m Butterworth land mobile satellite [48], [51] [51]
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fade01: Simulates the Gaussian process fg(t)g with correlation [6], [8]

R (�) 2gg �(�f �)D� (� ) = = e ;gg
R (0)gg

where f denotes the maximal Doppler frequency [93, page 128]D

v
f = ;D

�

v denotes the radial speed between the transmitter and the receiver, and the
carrier wavelength is denoted by �. This fading model is appropriate for
air-to-satellite links [6], [53], [8] or air-to-air links [35].

fade02: Simulates the Gaussian process fg(t)g with a Bessel function for its
correlation. In terms of its normalized power spectrum [61, page 117], [93,
page 150] (

2 �1=2(1 � (f=f ) ) jf j < fD DP (f) = :gg 0 elsewhere

This fading model is commonly used for land-mobile links. Parsons [61, pages
114-120] has a �ne discussion remarking that this spectrum is the result
of assuming the multipaths are distributed around a vertical whip antenna
uniformly in azimuth but with zero elevation. Allowing a small variance in
elevation rolls o� the poles.

fade03: Simulates the Gaussian process fg(t)g with a Butterworth function
for its normalized power spectrum [48]

(
2k �1(1 + (f=f ) ) jf j < fD DP (f) = :gg 0 elsewhere

Loo & Secord [48] use this fading model for both multiplicative and the
log-normal noise for their land-mobile satellite links in the L band. They
claim that a fast fading log-normal process is needed to model the e�ects of
foliage near the transmitter. To simulate the fast fading log-normal process,
they simply exponentiate the output of fade03. This fast fading applies to
carrier frequencies above VHF. It remains to determine reasonable ranges
for the variance of fg(t)g. Not surprisingly, it depends on the propagation
environment.
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Land Mobile Communications: A typical setup for land mobile communi-
cations is to assume that no specular channel exists. That is, �=0. Thus,
the probability density function of fja(t)jg is Ricean and described by the
ratio K of the direct to di�use power [61, page 135]. Parsons [61, page 209]
tabulates K for various terrains.

Aeronautical Channel: Figure 4.1 provides the model for the Input Delay-
Spread function of an aeronautical channel:q

h(t; � ) = P f�(� � � ) + ��(� � � ) + g(t)�(� � � )g:0 1 2 3

The re
ection coe�cient and delay are determined in Section 4.3 while fg(t)g
is given by fade01.m. The problem is to determine � . We assume the di-g

vergence D = 1. Beard, Katz, and Spetner [2], used the aeronautical channel
model to obtain estimates of � . They reported � =j� j was approximatelyg g 0

constant as a function of the electrical roughness parameter and was bounded
between 0.2 and 0.4. However, additional measurements reported by Beard
[1] in 1961 showed � =j� j was not constant. Although Bello [6] in 1975 de-g 0

1veloped approximations to this ratio, Ryan argues from conservation laws
that p

2� = G j� j 1�R ; (4:12)g f 0

where G denotes the \forward-scatter" gain which has a maximal value offp
1= 2. This corresponds to receiving the entire forward hemisphere on the
di�use channel. The simulations will set G to agree with measured meanf

values of approximately 0.33 so that G = 0:66.f

4.5 Ship-to-Shore

The preceding discussion is summarized in a ship-to-shore simulation adapted
from [56]. The goal is to parameterize the Input Delay-Spread function of
Equation 4.1 as: q

+j��h(t; � ) = P f L�(t� � ) + [� Re + g(t)] �(t� � )g;0 1 0 2

and the associated SNR for scaling the additive noise f�(t)g. Speci�cally, a
naval ship is operating within line-of-sight (LOS) of a coastal city. The ship

1Frank J. Ryan [1996]: Personal communication.
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transmits at f =300 MHz to a receiver positioned on blu�s 350 feet abovec

the shoreline. Consulting [44, Table 1.1], we see that the Flat-Terrain Model
from Section 4.3 applies and the geometry follows Figure 4.4.

Table 4.2 lists the relevant physical parameters. The antenna height hT
is taken from [44, page 202]. The receiver height h is taken to be theR

height of the blu�s. The total horizon range is 35 nm [43, page 115], so the
separation d=10 nautical miles insures both ship and shore are in sight of
each other. For ship-to-shore communications, assume an AN/WSC-3(V)6
radio is used on this LOS link at f =300 MHz [44, page 213]. Assume bothc

receiver and transmitter antenna have 0 dB gain (adapted from [44, page
203]) and vertical polarization. The results are highlighted in the following
paragraphs and summarized in Table 4.3.

Table 4.2: Ship-to-Shore Parameters

Parameter Symbol Value

Ship: antenna height h 100 feetT

gain G 0 dBT

power P 100 WattsT

Shore: antenna height h 350 feetR

gain G 0 dBR

Separation d 10 nautical miles
Carrier frequency f 300 MHzc

Bandwidth B 25 kHz
Receiver Noise Figure NF 8 dB
Cable Loss L 5 dBcable

Cable Temperature T 290 Kcable

Polarization vertical
Roll-o� factor � 0.5

The Re
ected Path: Equation 4.10 gives the re
ected delay:q
2 2� = d + (h + h ) = � + 0:0012 T R 1

which sets the phase shift ��=126 degrees (Equation 4.11). The grazing
angle is � =0.3772 degrees and the re
ection coe�cient isg

�6� = 0:8160 � 170:7 :0
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This is slightly reduced by the roughness coe�cient. Sea-State 2 sets the \1/3
wave height" h =2 feet [47, page 50-54]. Equations 4.7 and 4.8 determine1=3

the roughness coe�cient R=0.9999.
The Fading Component: Section 4.4 sets the di�use component fg(t)g to a
zero-mean, complex-valued, Gaussian random process with power spectrum

2proportional to exp(�f�f=f g ). The Doppler f is estimated to be 10 HzD D

[55]. Equation 4.12 sets � =0.0076. Thus, the relatively smooth sea andg

small grazing angle produce specular rather than di�use re
ection.

The Noise: An urban environment at f =300 MHz sets the sky temperaturec
5 NF=10T � 10 (K). The reciever temperature is T = (10 �1)�290 = 1540sky rcr

(K). Then the link budget for the operating temperature is

T = fG T + T g=L + T (1� 1=L ) + Top R sky ant cable cable cable rcr

= f199822 + 100g=2:95 + 290� 0:6612 + 1540

= 69474 [K]:

Thus, the sky noise due to the urban environment dominants the noise and
sets the additive noise power P =-136 (dB).�

Table 4.3: The surface scatter parameters for the ship-to-shore simulation:
The SNR=P =P =53 dB at the receiver input.R �

Symbol Value

L 1
P -83 dBR

P -136 dB�

� 61.73 �s1

� � � 1 ns2 1
�6� 0:8160 � 170:68020

��� 126:4
� 0.0076g

f 10 HzD

Table 4.3 completes the immediate goal of this chapter. But is it is
worthwhile to step back and consider a \global" view of how the signal power
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is arriving at the receiver's antenna. Speci�cally, we examine the free-space
gain G . Figure 4.6 shows how this gain distributes in range and elevation.0

The reader can see several lobes present in the cross section as a function of
elevation. The lobing is called the \Lloyds Mirror" e�ect and results from
the interference of the direct and re
ected wave. With this picture in mind,
we return to the question raised at the beginning of this chapter: How well

does this scattering model re
ect real-world propagation? The �nal section is
devoted to this problem.

Figure 4.6: Two-path model of propagation gain P =P from an antenna atR T

h =100 foot transmitting at f =300 MHz over water (Sea State 2). IsotropicT c

antenna pattern.

4.6 Propagation Issues: Ship-to-Shore
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There is a huge literature on propagation. Brayer in 1975 [10] and Goldberg
in 1976 [30] are both substantial collections of classic papers. Parsons [61],
Yacoub [93], and Boithias [9] are more recent references that summarize much
of the engineering or ray-tracing approach to propagation modeling. This
approach models the paths from the transmitter and receiver. A standard
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list for LOS propagation includes the following: Direct Path; Re
ected Path;
Sky Wave; Troposcatter; Surface Wave; Secondary Surface E�ects; Terrain
E�ects;

For a ship-to-shore simulation, f =300 MHz and d=10 nm precludes thec

need to model the sky wave [44, pages 157{163]. Likewise, the close range
permits us | in theory | to neglect the troposcatter [5]. However, the
surface wave and terrain e�ects cannot be ignored. To see this, the reader
is asked to compare the propagation factor P =P for two simulations. ThisR 0

factor is the e�ect due solely to the re
ections and not the free-space loss.
Figure 4.7 shows the estimated propagation factor for the ship-to-shore

simulation computed using from the two-path model. Figure 4.8 shows the
propagation factor essentially for the same setup but computed using the
VTRPE code [70]. Recall that the shore site is on high cli�s overlooking the
ocean. The VTRPE simulation includes these shore cli�s. It also includes a
dipole antenna pattern. Away from the terrain, the free-space structure of
these two propagation factors agree. However, the reader can see a strong
surface wave present in the VTRPE simulation and non-trivial scattering at
the edge of the cli�. The surface wave is important for maritime RF appli-
cations. The scattering at the edge of the cli� is critical for site placement.
These plots argue that RF mission planners handling propagation e�ects
with simple models or their \tweaked-up" versions are omitting non-trivial
phenomenon a�ecting mean power levels.
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Figure 4.7: Two-path model of the propagation factor P =P from an an-R 0

tenna at h =100 foot transmitting at f =300 MHz over water (Sea State 2).T c

Isotropic antenna pattern.
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Figure 4.8: VTRPE's propagation factor P =P : Antenna at h =100 footR 0 T

transmitting at f =300 MHz, vertical polarization, over sea water. Isotropicc

antenna pattern.
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Chapter 5

Channel Estimation: Sequence

Methods

The preceding chapters demonstrated that the quadrature-modulation fading
simulator (QMFS) is an acceptable channel model. The QMFS with Base-
band Assumptions B-1, B-2, B-3, B-4, and B-5 (See Chapter 3) produced
the following digital approximation of a signal received through the QMFS.
This model is given in Equation 3.3 and reproduced here for the reader's
convenience:

1X ey(t ) = h (m; k)s + �(t ):m B m�k m

k=�1

The received digital signal y = [y(t )] is sampled at time instantsm

Tet = mT = ;m
Os

where O is the oversampling rate. The baseband digital Input Delay-Spreads

function
NX e eh (m; k) = a (mT )x (kT � � ) (5:1)B n RC n

n=1 eis convolved with the zero-�lled signal s = [s ]. and corrupted by additivek

noise v = [�(t )] where �(t) = p � �(t). The channel estimation problem ism R

to recover h (m; k) from y and s.B

In matrix form, the channel system can be written as

y = H s+ v;B
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where H = [h (m;m � k)]. Suppose H was not so constrained. ThenB B B

for a non-trivial input vector s, we have an underdetermined system in the
unknown matrix H . Either no solution exists or an in�nite number ofB

solutions are available. Without modeling assumptions to constrain H , weB

Hcould simply o�er a scaled version of ys as a solution for H and close thisB

chapter. The problem with that solution is that it is not constrained by the
QMFS model speci�ed by h in Equation 5.1. More generally, all channelB

estimation schemes make some model assumptions | explicit or otherwise
| to constrain H .B

A common constraint is to claim the channel is (locally) time-invariant.
This forces H to be Toeplitz and we get a convolution:B

y = s � h + v:

Given the input signal s and the output y, the problem is to recover h =
[h (k)]. It goes without saying that there exists an enormous and expandingB

literature on this problem. This chapter uses a simple analytic framework
that includes both the standard PN processing and more recent extensions
to channel estimation.

The baseline PN processing is the simple and robust autocorrelation.
With w = flipud(s)=hs; si, the correlation function of s may be written as

R (k)ss
� (k) = = w � s:ss

R (0)ss

The digital channel estimate is then

h = w � y � hPN

because � � � for PN sequences. This approximation \�" is the crux of thess

problem for channel estimation and has spawned a cottage industry in the
manufacture of \optimal" sequences. The Gauss-Markov (GM) theory (See
Appendix 5.2) provides an analytical framework to handle this approxima-
tion. Section 5.1 reviews our baseline PN processing. Section 5.2 presents a
Gauss-Markov estimator. Section 5.3 presents a Minimum-Variance (MV) es-
timator. For comparison, a simple, time-invariant channel is carried through
these sections.

Because these simulations are time-invariant, a good question is the fol-
lowing: How do these estimators perform on time-variant channels? The
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problem with this worthy question is that it is focuses on baseband channel
simulations. In Chapter 7, these estimators are coupled with a demodulator
to process RF data. We will see that the demodulation scheme must also be
considered part of the estimator and that its e�ects swamp the problem of
time invariance. Section 5.4 closes with a review of the literature.

5.1 PN Processing

Our baseline channel estimation scheme is the standard PN processing. Viterbi
[90] has a �ne exposition on PN sequences and maximal length linear shift
register (MLSR) sequences. A pseudorandom f0; 1g sequence should exhibit
three \randomness" properties [90, page 12]

R.1 Relative frequencies of 0 and 1 are 1/2.

R.2 Run lengths of 0's and 1's are as a coin 
ipping experiment; 1/2 of all
run lengths are 1; 1/4 are length 2; 1/8 are length 3; . . . .

R.3 If the random sequence is shifted by any non-zero number elements, the
resulting sequence will have an equal number of agreements with and
disagreements with the original sequence

For an MLSR sequence of length P , Viterbi concludes \that with the slight
unbalance of 1=P . . . , an MLSR sequence is indistinguishable from a Bernoulli
or `coin-
ipping' binary sequence, at least with respect to randomness prop-
erties (R.1) through (R.3), as long as the initial vector or time is chosen ran-
domly. In all that follows, we shall treat MLSR and coin-
ipping sequences
interchangeably." To facilitate comparisons between the various channel es-
timators, the following time-invariant channel is o�ered as an example.

Example 5.1.1 (A \Leaky" Channel) This baseband time-invariant chan-
nel is rigged to show \sidelobe leakage" with minimal assumptions. An
N =511-point PN sequence s is generated by the call to pn src(9,1041,N ,1).s s

Figure 5.1 plots the sample correlation function

R (k)ss
� (k) = :ss

R (0)ss
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The two largest sidelobes of the correlation function are marked with circles
and determine the � 's. The sign of the delays is chosen to cause maximaln

cancellation at the �rst re
ector. We assume the sample increment T matches
the symbol rate. That is, there is no oversampling (O =1) so the raised-cosines

�lters needs only \0" or \1" values. The channel h is shown in Figure 5.2.
Our digital model takes the form

y = s � h+ v = conv(s;h) + v;

where the receiver noise v is IID Gaussian because O = 1 (See Appendix D).s

For ease of examining the plots, the re
ector coe�cients have magnitude 1.
This makes the channel \active" with a gain of 3. To compensate, the noise
level set from Equation 2.12 is modi�ed as follows: !

23
SNR = 10 log :

10 2�v

The PN channel estimate is

h = conv(flipud(s);y)=N :PN s

Figure 5.3 compares the magnitudes of the channel h and h and shows thePN

magnitude of the �rst delay is degraded by the sidelobe leakage. 2
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Figure 5.1: Sample correlation function � (k) for the PN sequencess

s =pn scr(9,1041,511,1). The circles mark the delay times in the channel.
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Figure 5.2: The channel function h rigged for maximal leakage into the �rst
re
ector.
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Figure 5.3: Upper Panel: The time-invariant channel magnitude jhj. Lower
Panel: The PN-estimate jh j showing the side-lobe leakage degrading thePN

estimate of the �rst re
ector.

Given this leakage, it is natural to ask: How long does the PN sequence

need to be to reduce this leakage? Write the time-invariant channel as a linear
system
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samples: SNR=20 dB

y = s � h+ v = C h+ v;s

where C denotes the convolution matrix determined by s. We can generates

C in MATLAB ass

C = conv2(eye(length(h); s) = convmtx(s; length(h)):s

Elementary bounds on the bias and the variance for any linear estimator are
obtained next.

Lemma 5.1.1 Assume s and h are �xed vectors of length N � N . Assumes h

Hv is a zero mean noise vector with covariance R = E[vv ]. Assume thevv

linear system

y = C h+ vs

admits an approximate left-inverse W :

WC = I +R;s
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where R will be called the residual matrix. The estimate h of h has theW

form

h = h+Rh+Wv:W

The bias is

Bias[h ] = E[h � h] = Rh:W W

The covariance is
HCov[h ] = WR W :W vv

If R is pointwise bounded: jR(m; n)j � � thenmax

(a) kBias[h ]k � kRkkhk � � N khk :W 2 2 max 2h

(b) kBias[h ]k � � khk :W 1 max 1

Lemma 5.1.1 shows that the mean-square error in h arises from the biasW

and the variance:

2 2 HE[kh � hk ] = kRhk + trace[WR W ]:W vv2 2

It is the bias that causes the sidelobe leakage. The bias can be set to zero by
setting W to a left inverse | which may induce an excessive variance. This
variance can be made small by setting W to zero | giving a rather biased
estimate. The problem is to �nd an optimal trade-o� between the bias and
the variance. This leads to some fascinating optimization problems for our
channel estimators. The PN estimator uses the \matched �lter":

1
Hh = Wy = C y:PN sNs

Its residual matrix R is the Toeplitz matrix generated from the correlation
function � (k) of s:ss

1
HR = C C � IssNs2 3
0 � (�1) � (�2) . . . � (�N + 1)ss ss ss h6 7..6 7. ..� (1) 0 � (�1) .6 7ss ss6 7..6 7. ..= 6 � (2) � (1) 0 . 7 :ss ss6 7.6 7. . . .. . . . .6 7. . . . .4 5

. .. .. .� (N � 1) . . . 0ss h
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Thus, the bias is governed by the sidelobes of � . There exists a considerabless

literature on the correlation properties of PN sequences (The 1980 review
paper of Sarwate & Pursley cites 136 references [76] See Helleseth & Kumar
for a 1997 review [38]). The bulk of the theory treats circular or periodic
convolution whereas we need estimates of the maximum sidelobes for linear
or aperiodic convolution (actually need a bound on kRk). A typical approach
is to adapt the periodic estimates [38, page 98]. Set � to be the maximummax

of the correlation sidelobes:

� (N ) = maxfj� (k)j : 1 � k � N g:max s ss s

Then arguments based on either the merit �gure [38, page 102] or the Welsh
bound [38, page 103] give a lower bound of

1p� (N ) �max s
4N � 3s

for large N . The upper bound is more di�cult [54] and there holds [75]s

q2 log(4N =�) 1sp� (N ) < 1 + 1=N +max s s
� NN ss

for large N . Figures 5.4 and 5.5 illustrate a variant of these sidelobe levelss

and bounds. The PN \type" or characteristic polynomial is held constant
while the sample sidelobe levels are computed for increasing sequence length
N . If the channel had a single strong re
ector and the PN sequence froms

Figure 5.4 was used, then the bias induced by the strong re
ector may be
estimated as

� (N ) [dB] � 9:7� 0:86�N [dB];max s s

where N is in dB. With N =511, this re
ector could induce a bias of ap-s s

proximately -13.5 dB and sets a \bias 
oor" on the channel estimate. Thesep
�gures show that � (N ) rolls o� more slowly thanO[1= N ]. This slow re-max s s

duction of � (N ) for h requires long PN sequences. But long sequencesmax s PN

may run afoul of the time-invariance assumption for the channel.
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Figure 5.4: The dots mark the maximal sidelobe levels of the PN sequence
pn scr(9,1041,N ,1). Upper bound: Sarwate. Lower bound: Welsh.s
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Figure 5.5: The dots mark the maximal sidelobe levels of the PN sequence
pn scr(11,5001,N ,1). Upper bound: Sarwate. Lower bound: Welsh.s
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Although the maximum sidelobe level is useful, more accurate assessments
of the bias are obtained from kRk. This is the next result and illustrated in
the following �gures.

Lemma 5.1.2 Assume s and h are �xed vectors of length N � N . Assumes h

s is a PN sequence. Assume v is a zero mean noise vector with covariance

R . Solve the linear systemvv

y = C h+ vs

using the \matched �lter":

1
Hh = C y:PN sNs

The residual matrix is
1

HR = C C � I:ssNs

The bias is

Bias[h ] = RhPN

and has bounds:

(a) If � (N ) denotes the maximal sidelobe level thenmax s

4 log(4N =�)spkRk � � (N )�N < :max s h
� Ns

b(b) If s = fft(s; N +N � 1) thens h


 

 
1
2
 
bkRk � jsj � 1 :
 
Ns 1

The covariance is
1

HCov[h ] = C R C :PN vv ss2Ns

2If the noise is uncorrelated: R = � I thenvv v

Nh2Var[h ]] = trace[Cov[h ]] = � :PN PN v Ns
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The point of Lemma 5.1.2 is that the bias is bounded by kRk. Indeed,
a channel simulation that took h from the eigenspace of kRk would attain
maximal bias. So how bad is this bias? Figures 5.6 and 5.7 plot kRk as a
function of sequence length N while holding the channel length constant.s

These plots show kRk is a decreasing function of the sequence length only
to half the maximal sequence length. By comparing the dB levels with the
maximum sidelobe level � (Figures 5.4 and 5.5), we see that � is a in-max max

complete description of the bias. For completeness, the two bounds obtained
from Lemma 5.1.2 are plotted. The FFT bound is very good | provided
N � N . As N becomes much greater than N , the FFT bound levelss sh h

o� because R is the small compression of a large circulant matrix (See the
discussion following Lemma 5.2.1). Using this large matrix to bound its com-
pression R produces the loose upper bounds. The Frobenius bound follows
kRk well but is 10 dB too loose also.

Figure 5.6: The dots mark the bias kRk of the PN sequence
2bpn scr(9,1041,N ,1). The FFT bound is kjsj =N � 1k . The Frobeniuss s 1

bound is N � (N ).max sh
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Figure 5.7: The dots mark the bias kRk of the PN sequence
2bpn scr(11,5001,N ,1). The FFT bound is kjsj =N � 1k . The Frobe-s s 1

nius bound is N � (N ).max sh

5.2 Gauss-Markov Processing
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Recall that the time-invariant channel is modeled as

y = s � h+ v = C h+ v;s

where C denotes the convolution matrix determined by s. The vectors ss

and h have lengths N � N . Processing all of y gives C as the rectangulars sh

matrix
C = conv2(eye(N ); s) � (N +N � 1)�N :s sh h h

Some applications take only the center of y for processing. This gives C ass

the square matrix

0 0C = conv2(eye(N ); s; same ) � N �N :s h h h

The Gauss-Markov estimator assumes the following about the channel h and
the noise v:
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GM-0 h is an unknown but non-random vector.

GM-1 E[v] = 0.

HGM-2 E[vv ] = R .vv

The Gauss-Markov estimate h is the linear minimum-variance unbiasedGM

estimate given as (See Theorem C.0.1):

H �1 �1 H �1h = (C R C ) C R yGM ss vv s vv

with covariance
H �1 �1Cov[h ] = (C R C ) :GM ss vv

Thus, knowledge of the noise covariance is required for this �lter. The excep-
tion occurs when the noise is uncorrelated which gives the pseudo-inverse.
Because the Gauss-Markov estimate is unbiased, the bias that plagues the
PN estimate is eliminated. Consequently, we expect the sidelobe leakage to
be greatly reduced when compared to h . If the covariance of h is \lessPN GM

than" the mean-square error of h , then h is a better estimator thanPN GM

h . We explore these issues using the channel of Example 5.1.1.PN

Example 5.2.1 (The \Leaky" Channel (Continued)) Continuing with
Example 5.1.1, recall the three re
ectors in channel h were selected for max-
imal sidelobe leakage (See Figures 5.1 and 5.2). Recall the symbol rate T
was selected to match the sampling rate so that the receiver noise v is IID:

2R = � I . Then the Gauss-Markov estimate becomes the pseudo-inversevv v

or the least-squares estimate:

+h = C yGM s

2 H �1with covariance Cov[h ] = � (C C ) . Figure 5.8 compares the magni-GM sv s

tudes of the channel h, the PN estimate h , and the Gauss-Markov estimatePN

h . The entire vector y is used so that C is rectangular. For this low-noiseGM s

case, the Gauss-Markov estimate h outperforms the PN estimate h . 2GM PN

Several questions regarding the Gauss-Markov estimate naturally occur.
The �rst question regards the well-known problems of such inverse �lters. Is
C well-conditioned with respect to inversion? That is, will small singulars

values of C amplify the noise to degrade the estimate h ? Figures 5.9s GM
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Figure 5.8: Upper Panel: The time-invariant channel magnitude jhj. Middle
Panel: The PN-estimate jh j. Lower Panel: The Gauss-Markov estimatePN

jh j.GM

and 5.10 illustrate the condition number of C as a function of sequences

length N while holding the channel length and PN type constant. Heres
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the condition number of C is the ratio of the largest singular value to thes

smallest singular value. These �gures show that C is well-conditioned fors

large N and a notion of the minimum sequence length needed to obtain as

small condition number.
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Figure 5.9: Condition number of C as a function of sequence length N .s s

Sequence: s=pn scr(9,1041,N ,1). Channel length: N =128.s h
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Figure 5.10: Condition number of C as a function of sequence length N .s s

Sequence: s=pn scr(11,5001,N ,1). Channel length: N =128.s h
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The second question regards the variance: How does the variance of the

Gauss-Markov estimate h compare to the PN estimate h ? Under theGM PN

2assumption that the noise is uncorrelated: R = � I Lemma 5.1.2 givesvv v

that
Nh2Var[h ] = � ;PN vNs

while
2 H �1Var[h ] = � trace[(C C ) ]:GM sv s

Figures 5.11 and 5.12 compare the variance of these two estimators assuming
2uncorrelated noise. The variance is normalized by � . These �gures showv

the sequence length needed to reduce this (normalized) variance. Both plots
also show by trading variance for bias, h obtains a slightly lower variancePN

than h . For this report, variance is less of an issue than bias becauseGM

the channel soundings will have a high SNR. A trade o� between bias and
variance is deferred until the third question.

Figure 5.11: Normalized variance of h and h as a function of sequencePN GM

length N . Sequence: s=pn scr(9,1041,N ,1). Channel length: N =128.s s h
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Figure 5.12: Normalized variance of h and h as a function of sequencePN GM

length N . Sequence: s=pn scr(11,5001,N ,1). Channel length: N =128.s s h

The third question regards the practicality of the Gauss-Markov estima-
tor. The size of C may make implementation di�cult becauses
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C � O (N +N � 1)� O N :s s s s s h

For example, a 1001-point sequence transmitted through a channel of length
400 and oversampled by 12 makes C � 16; 800 � 4800. This is a rathers

large matrix to blindly invert. So is it worthwhile to ask: What is a practical

implementation or approximation to the Gauss-Markov estimator? Given
the low condition number of C , a left inverse is a candidate. One MATLABs

implementation is:

M = N +N � 1;s h

h = ifft(fft(y):=fft(s;M ));FGM

h = h (1 : N );FGM FGM h
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The matrix formulation is also revealing. Let U denote the unitary M �M
DFT matrix partitioned across its columns:

1pU = dftmtx(M) = [U U ] � M � [N N � 1]:1 2 h h
M

Hb bLet s = fft(s;M) and set S = diag(s). Then C = U SU and admits thes 1

left inverse
H �1W = U S U;
1bprovided s does not pointwise vanish. With this notation, the \specs" of this

fast Gauss-Markov (FGM) estimate may be compared to the Gauss-Markov
estimate.

Lemma 5.2.1 Assume s and h are �xed vectors of length N � N , respec-s h

tively. Assume s is a PN sequence with DFT

bs = fft(s; N +N � 1)s h

bAssume also no component of s vanishes. Assume v is a zero mean noise

vector with covariance R . Solve the linear systemvv

y = C h+ vs

using with the \inverse �lter":

H �1h = Wy = U S Uy:FGM 1

Then h is unbiased and has covarianceFGM

HCov[h ] = WR WFGM vv

Example 5.2.2 (The \Leaky" Channel (Continued)) Continuing with
Example 5.1.1, recall the three re
ectors in channel h were selected for max-
imal sidelobe leakage (See Figures 5.1 and 5.2). Recall the symbol rate
T was selected to match the sampling rate so that the receiver noise v is

2IID: R = � I . Figure 5.13 compares the magnitudes of the channel h, thevv v

Gauss-Markov estimate h , and the fast Gauss-Markov estimate h , ForGM FGM

this low-noise case, both estimators are comparable and outperform h . AsPN

expected, the noise 
oor has increased in h . This e�ect is explored next.FGM

2
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Figure 5.13: Upper Panel: The time-invariant channel magnitude jhj. Mid-
dle Panel: The GM-estimate jh j. Lower Panel: The Fast Gauss-MarkovGM

estimate jh j.FGM

Because the Gauss-Markov estimate is the unbiased linear estimator with
minimum variance (See Theorem C.0.1), it is natural to ask How does the
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increase in variance of incurred by using h rather than h ? GatheringFGM GM

the covariances obtained so far, we have:

�2 H(a) Cov[h ] = N C R C .PN vv ss s

H �1 �1(b) Cov[h ] = (C R C ) .GM ss vv

H(c) Cov[h ] =WR W .FGM vv

2If the noise is uncorrelated: R = � I then:vv v

2 �1(a) Var[h ] = � N N .PN hv s

2 H 2 �1(b) Var[h ] = � trace[(U jSj U ) ].GM 1v 1

2 H �2(c) Var[h ] = � trace[U jSj U ].FGM 1v 1
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2bIgnoring subspace angles, Var[h ] sums jsj before inverting so smallGM

2bFourier coe�cients need not be fatal. Var[h ] inverts jsj before summingFGM

so a small Fourier coe�cient can blowup the variance. Figures 5.14 and 5.15
2compare these normalized (� =1) variances as a function of sequence lengthv

N . As expected, the variance of h always exceeds the variance of h .s FGM GM

And Fourier coe�cients do vanish for a few sequence lengths (omitted from
the plots). Regularization of h can reduce this variance. Indeed, a heavilyFGM

regularized estimate can have an arbitrarily small variance | with the usual
cost of a large bias. So a bias-variance trade-o� must be made. For example,
the channel soundings collected for this report typically have an SNR of 20{
30 dB. Figures 5.14 and 5.15 show h has an additive noise gain rarelyFGM

exceeding 10 dB. So a large SNR gives the nod to minimal regularization.
Regularization schemes are discussed in the next section in the context of
the Minimum-Variance estimator.

Figure 5.14: Normalized variance of h , h , and h as a function ofPN GM FGM

N . Sequence: s=pn scr(11,1041,N ,1). Channel length: N =128.s s h
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Figure 5.15: Normalized variance of h , h , and h as a function ofPN GM FGM

N . Sequence: s=pn scr(11,5001,N ,1). Channel length: N =128.s s h

5.3 Minimum-Variance Processing

The minimum-variance estimator concludes this review of the sequence-based
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channel estimators. Recall that the time-invariant channel is modeled as

y = s � h+ v = C h+ v;s

where C denotes the convolution matrix determined by s. The vectors ss

and h have lengths N � N . The Gauss-Markov estimate h is the linears GMh

unbiased estimate that minimizes

2h = argminfE[kh � hk ] : E[h ] = E[h]g:GM W W

The minimum variance estimate h is the linear estimate that minimizesMV

2h = argminfE[kh � hk ]g:MV W

Thus, a trade-o� between bias and variance has been made to decrease the
mean-square error. More formally, The minimum-variance estimator assumes
the following about the channel h and the noise v (See Theorem C.0.2):
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MV-0 h is an unknown but random vector.

MV-1 E[v] = 0.

HMV-2 E[vv ] = R .vv

HMV-4 E[hh ] = R .hh

HMV-5 E[hv ] = 0.

The mean of h need not be zero (See [50, page 88] for this case). The
minimum-variance estimate is

H �1 �1 �1 H �1h = (C R C +R ) C R yMV ss vv s vvhh

with covariance
H �1 �1 �1Cov[h ] = (C R C +R )MV ss vv hh

and bias Bias[h ] = RE[h] with residual matrix (See Lemma 5.1.1)MV

H �1 �1 �1 H �1R = (C R C +R ) C R C � I:s ss vv s vvhh

Thus, knowledge of both the channel and noise covariances are required
for this �lter. So the same issues as for the Gauss-Markov �lter arise here
with greater complexity. To start the discussion, make the simplest assump-
tions: uncorrelated noise and uncorrelated channel with constant variance.
Then the minimum-variance estimate has the form of the regularized pseudo-
inverse of C :s

H �1 Hh (�) = (C C + 
I) C y;MV ss s

2 2where the regularization parameter 
 = � =� | in theory. In practice, 
v h

must be determined from data. There is a vast literature on regularization.
One of the heavy-weights is Per Christian Hansen and his L-curve theory

[32], [33], [34], [94]. Hansen has found for inverting ill-conditioned operators,
the logarithm of the curve " #kh (
)kMV 2
 ! ky� C h (
)ks MV 2

forms an \L" with optimal 
's located near the knee of the \L". Although
C is typically well-conditioned, we adapt these ideas for a bias-variances

trade-o�.
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Figures 5.16 and 5.17 illustrate these kinds of trade-o�s for the minimum-
variance estimate h (
). Make the assumptions that the channel covari-MV

2 2ance R = � I and noise covariance is R = � I . As 
 ! 1, the biasvvhh vh

R(
) converges to I while Var[h (
)] converges to 0. Because C is well-MV s

conditioned, as 
 ! 0, the bias R(
) converges to 0 while Var[h (
)] doesMV

not blowup but converges to a �nite value. Thus, the vertical part of the \L"
is missing. These performance curves show the trade-o�s as a function of 
.
The high SNR selects 
 � 0, so the minimum-variance estimator converges
to the Gauss-Markov estimator: h (0) = h .MV GM

Figure 5.16: Bias kR(
)k of the minimum variance estimate versus the nor-
malized variance of h (
). Sequence: s=pn scr(11,1041,N ,1). ChannelMV s

length: N =128.h

The high SNR also permits a simple regularization of the fast Gauss-
Markov estimate of Section 5.2. Figures 5.14 and 5.15 show that h isFGM
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ill-conditioned for a few sequence lengths. One regularization scheme, using
the notation of Lemma 5.2.1, is  !bs

Hh (
) = U diag Uy;RFGM 1 2bjsj + 
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Figure 5.17: Residual versus normalized variance of h (
). Sequence:MV

s=pn scr(11,1041,N ,1). Channel length: N =128.s h

where 
 is selected to pull the variance of h (
) within a speci�ed toler-RFGM

ance of the variance of h . More formally, �nd the smallest 
 so thatPN

Var[h (
)] � Var[h ] + � [dB]:RFGM PN
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Figure 5.18 illustrates this approach with a tolerance of �=8 dB. Almost all
the FGM estimators have a variance within �=8 dB of the PN estimator.
These are marked with a \+" in the lower panel and have zero bias. Those
h estimates with a variance exceeding 8 dB are regularized to meet thisFGM

variance tolerance. Their bias is marked with a \." in the lower panel.
The high SNR permits this fast estimate to be used with its bias-variance
performance benchmarked against the PN estimate.

5.4 Review of the Sequence Literature

We use the previous estimators and examples to review the sequence litera-
ture. The linear system is

y = s � h+ v = C h+ vs
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Figure 5.18: Upper Panel: Normalized variance of h , and h (
) asPN FGM

a function of N . Sequence: s=pn scr(11,5001,N ,1). Channel length:s s

N =128.h

when C is typically invertible (hence a square matrix) and the noise v iss
2IID: R = � I . The Gauss-Markov estimate becomes the inverse �ltervv g
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�1h = C yGM s

with error variance

2 2 H �1E[kh � hk ] = � trace[(C C ) ]: (5:2)GM s2 v s

The trick is to �nd a sequence s so that the small singular values of C dos

not amplify the noise.
Avoiding this \blow-up" due to the small singular values is the start-

ing point for the channel estimation of Milewski [52]. He assumes the lin-
ear system is modeled by cyclic convolution rather than linear convolution.
Consequently, C is circulant and may be diagonalized by the DFT matrix:s bF = dftmtx(N ). With s = F s = fft(s), the variance iss

NsX
2 2 �2bE[kh � hk ] = � js(k)jGM 2 v

k=1
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Milewski minimizes the variance under the condition that ksk = N . The2 s
2bminimum occurs when all the Fourier coe�cients are equal: js(k)j = N .s

Such sequences are called Constant Amplitude Zero Autocorrelation (CAZAC)
sequences [15], [67]. The error variance for a CAZAC sequence is

2 2E[kh � hk ] = � :GM 2 v bMilewski remarks that a MLSR sequence has Fourier coe�cients s(0) = 1b b band s(1) = s(3) = . . . s(N � 1) so that its variance iss

2Ns2 2E[kh � hk ] = � :GM 2 vN + 1s

That is, for large N , \a maximal-length sequence is at a 3-dB disadvantages

compared to a sequence with zero autocorrelation" [52].
Milewski also states that the most important class of CAZAC sequences

are the polyphase sequences that take their values from the roots of unity.
Chu [15] found that \chirps" of the form:(

2exp(+j2�Pk =N ) N evens s
s(k) =

exp(+j2�Pk(k + 1)=N ) N odds s

for the integer P relatively prime to N , quali�ed as such polyphase se-s

quences.
Generalizations of the CAZAC sequences include the semiperfect binary

sequences characterized by its cyclic autocorrelation function equal to zero
at �N =4 bits around the origin [69]. That is, a trade-o� between usings

binary values and having a \good" autocorrelation function has been made.
Although Theorem C.0.1 quanti�es the trade-o�, references analyzing the
covariance have not been found to date.

Direct use of Theorem C.0.1 is found in Felhauer's work starting in 1993
[23], [21], [23]. Felhauer uses inverse �ltering with a CAZAC sequence. Hebnotes that jsj is constant. Thus, the engineer is free to set the phases to meet

additional constraints. Felhauer elects to �nd sequences that will be robust
with respect to the ampli�er's non-linearities. He desires that the analog
signal s(t) input to the transmitter's ampli�er have \an envelope as constant
as possible" [23]. If p (t) denotes the pulse-shaping �lter in the transmitterT

and s is the CAZAC sequence then

NsX
s(t) = s(k)p (t� kT ):T

k=1
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Felhauer optimizes over the phases to minimize the crest factor

ksk
1

CR(s) = :
ksk2

This approach is said to be e�ective for combating system non-linearities.
St�uber, Austin, and Katz [86] use the Gauss-Markov approach to mini-

mize variance in Equation 5.2. They do not require C to be circulant. Theys

do restrict their search to elements of the constellation points. and also re-
quire the linear autocorrelation function have small sidelobes. Their search
extended to only 4 taps.

From the current literature, it would appear that the Gauss-Markov es-
timator has become an established technique for channel estimation that
outperforms the standard PN estimator. However, much of the analysis is at
baseband. Baseband assumptions, such as those in Chapter 2, assume proper
demodulation. Chapter 8 demonstrates that a demodulator must part of a
practical channel estimator. This is the approach to channel estimation in
Chapter 6: the channel the associated covariances, and the demodulator are
adaptively estimated using a minimum-variance estimator.
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Chapter 6

Channel Estimation: System

Identi�cation

The channel estimation problem introduced in the previous chapter admits
an interpretation as a classical system identi�cation problem [37]. Figure 6.1
shows the setup and its solution by system identi�cation. A known input
signal is applied to an unknown system. The observed signal is the output of
the system corrupted by additive noise. The unknown system is linear but
may be time-varying. The known input signal is also applied to an adaptive
linear �lter. An error signal is obtained by subtracting the observed signal
from the output of the adaptive �lter. By forcing the adaptive �lter to
approximate the observed signal, the adaptive �lter itself is then interpreted
as an estimate of the unknown system. To force this �t, the weights of the
adaptive �lter are selected to minimize the norm of the error signal. A typical
norm is the mean square error (MSE) or power of the error signal.

This processing raises an interesting identi�cation issue: Why should the

adaptive �lter so obtained have anything to do with the unknown system?

We begin by specializing this general problem to channel estimation. Sec-
tion 6.1 shows how to insert the Input Delay Spread function for the unknown
system and the symbol sequence for the input signal. Section 6.2 gives a
�lter-bank approach to estimate the channel. Section 6.3 boosts this �lter-
bank approach by mitigating residual carrier e�ects. Section 6.4 combines
both approaches. With this background in place, Section 6.5 answers the
identi�cation issue by demonstrating the uniqueness of the adaptive �lter.
Section 6.1 closes by setting the adaptive �lter parameters.
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Figure 6.1: Generic system identi�cation schematic.

6.1 The Discrete Channel

Speci�c to channel estimation, we estimate the discrete baseband Input De-

lay Spread function h (m; k) of Equation 3.4 as the unknown system inB eFigure 6.1. The input signal is the zero-�lled symbol sequence fs g ofm

Equation 3.5. Although h (m; k) has in�nite support in the lag variableB ek because of the raised cosine pulse x (kT ), the estimate is based upon aRC

time-varying, causal �nite impulse response (FIR) structure and is denotedn oL�1bby h (m; k) .B
k=0

The length L of the FIR �lter must accommodate the largest expected
delay spread with corresponding temporal smoothing caused by the �lterex (kT ). In vector notation, the channel estimate at time m is given byRC

h i
Hb b b bh (m) = h (m; 0) h (m; 1) � � � h (m;L � 1) (6:1)B;L B B B

and the symbol vector is given by

Te e e es = [s s � � � s ] : (6:2)m m m�1 m�L+1
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Received

Signal

+

+

Approximation

Received Signal

+

�

Signal

Input

P

P

Adaptive

Filter

System

Error Signal

Noise

The output of the adaptive channel approximation �lter is given by

Hb eby = h (m)s : (6:3)m mB;L

Figure 6.2 is the schematic of this discrete channel estimation problem. The
discrete noise term fn g corresponds to the sampled lowpass noise processm

in Equation 3.3.

82



Figure 6.2: Discrete baseband channel estimation schematic.

6.2 A Filterbank Approach

The channel estimation technique depicted in Figure 6.2 can be implemented
several ways. We propose a computationally e�cient algorithm to exploit

ethe zero-�lled input sequence fs g. In addition, we extend the processingm

to handle a special \noise" type. Residual RF carrier e�ects resulting from
Doppler or frequency o�set between the transmitter and receiver oscillators
may exist in the received data fy g. To compensate for these residual carrierm

e�ects, an additional phase recovery loop is incorporated into the channel
estimation algorithm. bThe channel estimate vector h (m) will be updated at the sampling rateB;Le e1=T . Because the input sequence fs g is zero-�lled, Equation 6.3 indicatesm

that only a subset of the �lter coe�cients corresponding to non-zero elements
e bof fs g contribute to the output fy g at each sample m. As a consequence,m m

only those coe�cients are updated. An individual coe�cient is updated at
the symbol rate 1=T . For the sake of simplicity, we assume that the FIR �lter� �b blength L is an integer multiple L of the oversampling value O L = O L .s s

Then the single-�lter estimation procedure of Figure 6.2 naturally decom-
cposes into a bank of �lters. This is depicted Figure 6.3, where m = bm=O cs

+

+

+

�

P

Pf~smg

hB(m; k)

b
hB;L(m)

fnmg

fymg

femg

f bymg

and bxc denotes the integer less than or equal to x. The input sequence fs gbm
to the �lter bank is incremented once every O samples. So during one cycles

through the �lter bank, each �lter operates on the same sequence of data
symbols.
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Figure 6.3: Channel estimation implementation with residual carrier com-
pensation.
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6.3 Residual Carrier Recovery

The residual carrier recovery circuit displayed in Figure 6.3 has been used
in adaptive equalization-demodulation [19], [16]. The loop �lter is shown in
Figure 6.4 and has transfer function

�1 �1
 (1� �z ) z
H (z) = : (6:4)P

�1 �1(1� z ) (1 � �z )

An exact analysis of the carrier recovery loop is di�cult. Standard sim-
plifying assumptions are [19]: (i) The channel estimation routine models the
propagation channel exactly; (ii) Only a small error exists in the estimation
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Figure 6.4: Residual carrier recovery loop �lter H (z).P

of the residual carrier phase. These assumptions permit us to write

�i(� �� )m mby = e y ; (6:5)m m

where � is the actual residual carrier phase. Because the di�erence in them

phases is small, we have the linear approximation:

� = sin (� � � ) � � � � :m m m m m

Figure 6.5 displays this linearized phase lock loop approximation. Its transfer
function is

�1 �1
 (1� �z ) z
H (z) = : (6:6)PLL

�1 �21� (1 + �� 
) z + (� � 
�) z

f�
m
g f�

m
g

Z�1 


� �

P P P

Z�1Z�1

+

�

Figure 6.5: Linear model of the residual carrier recovery phase lock loop.

Assumptions (i) and (ii) permit us to approximate the carrier recovery
loop as a second-order phase lock loop [80]. The �lter parameters 
, �
and � are chosen so that the phase lock loop bandwidth is \wide" during
signal acquisition and \narrow" during channel tracking. Actual values are
determined through experiment.
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6.4 Implementation: Filterbanks & Carrier

Recovery

Figure 6.3 reveals that the Input Delay Spread function estimate is multi-b cplexed into a bank of �lters. To recover the estimate h (m), de�ne theB;L

matrix 2 3
Tb ch (m)bB;L;16 76 T 7b ch (m)6 7bB;L;26 76 7�c 6 7cH (m) = : (6:7)B 6 76 � 76 76 7�4 5
Tb ch (m)bB;L;Os

b cc cThen h (m) is recovered by consecutively aligning the columns of H (m)B;L B

into a vector. b cSeveral adaptive algorithms can be used to update the vectors h (m).bB;L;j

We utilize the minimum MSE criteria and approximate the solution with the
robust and computationally e�cient normalized least mean square (NLMS)
algorithm [92], [37] in which each �lter is updated as

�i� � 2b b mc c eh (m+ 1) = h (m) + �e e s =ks k ; (6:8)b b m bm bmB;L;j B;L;j

where h iT
s = s s � � � sbm bm bm�1 bbm�L+1 (6:9)

H �i�b mce = y � h (m)s em m bmbB;L;j

eand j = rem(m;O ) + 1, � is the step size parameter chosen such thats
2 be0 < � < 2 [37], and ks k = L for symbols with unit variance.bm

Remarks: (i) Implicit in this algorithm and Figure 6.2 is that the data have
bbeen appropriately synchronized such that fy g and fy g correspond tom m

approximately the same input data sequence. (ii) The input delay spread
efunction estimate derived from Figure 6.2 using the zero-�lled sequence fs gm

is not identical to the estimate derived from Figure 6.3 using the sequenceb cfs g. Each estimate h (m) derived from Figure 6.3 spans O estimatesB;L sbm
from Figure 6.2. Equivalently, only the updated coe�cients are incorporated
into the vector estimate of Figure 6.3. However, if the channel is varying
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slowly enough (much slower than the symbol rate) the di�erence between
the snapshots of the estimates at time m derived from Figure 6.2 and at

ctime m from Figure 6.3 is insigni�cant.

6.5 Linking the Filter to the Channel

The algorithm described in Section 6.4 approximates the optimum MSE so-
lution | the Wiener �lter. The introduction raised the question regarding
how the Wiener �lter adequately represents the discrete baseband Input De-
lay Spread function. We conclude by explicitly making this link.

The output fy g of the linear, time-varying system of Figure 6.2 ism

1X
y = h (m; k)~s + n : (6:10)m B m�k m

k=�1

For simplicity, we assume that there is no residual RF carrier component.
The output of the Wiener �lter is given by

Hbb cy = h (m)s (6:11)OPT;m bmbOPT;B;L;j

where
cm = mO + j � 1 (6:12)s

thb cand h (m) is the Wiener �lter of the j component of the �lter bank.bOPT;B;L;j
De�ning the autocorrelation matrix h i

HcR (m) = E s s ; (6:13)s bm bm
and the cross correlation vector

�cp (m) = E [y s ] ; (6:14)j m bm
ththe j Wiener �lter is given by [37]

�1b c c ch (m) = R (m)p (m): (6:15)jsbOPT;B;L;j

Assuming that the input data process fs g is white with zero mean andbm
2variance � , the Wiener weights are given bys

1
�b ch (m) = E [y s ] : (6:16)mb bmOPT;B;L;j 2�s
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Next, assuming that the noise process fn g is zero mean and independentm cof the input symbols fs g, the cross correlation vector p (m) is given byjbm
2 3

1X
� �4 5c cp (m) = E h (mO + j � 1; k)~s s : (6:17)j sB bmbmO +j�1�ks

k=�1

Simplifying, we get the Wiener weights

2 3
� ch (mO + j � 1; j � 1)sB6 7
� c6 7h (mO + j � 1; j � 1 +O )s sB6 7
�6 7ch (mO + j � 1; j � 1 + 2O )s s6 B 76 7b c �h (m) = 6 7 : (6:18)bOPT;B;L;j 6 76 7�6 76 7�4 5
� bch (mO + j � 1; j � 1 + (L� 1)O )s sB

Then, using the de-multiplexing scheme suggested by Equation 6.7 and using
Equation 6.1, the L coe�cients representing the minimum MSE estimate are
given by

b c ch (m; k) = h (mO + rem(k;O ); k); 0 � k � L� 1: (6:19)OPT;B B s s

This estimate is a windowed version of the discrete baseband Input Delay
Spread function spanning O time samples. Also, if the step size parameters

� of the NLMS update algorithm of Equation 6.8 is \small enough", standard
analysis shows that this approximating solution approaches the Wiener �lter
in the mean and has bounded variance when operating in the steady-state
[37].

6.6 Setting the Adaptive Filter Parameters

Table 6.1 lists values of the adaptive �lter parameters which are used to pro-
cess the simulated and experimental data. Figure 6.6 is the corresponding
frequency response of the phase lock loop �lter H (z). The parametersPLL

are divided into three modes. During acquisition mode, the bandwidth of
H (z) is widest resulting in rapid initialization of the adaptive �lter weightsPLL

and coarse tuning to the carrier frequency and phase. The training mode has
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a narrower bandwidth which allows through less noise and is set for conver-
gence of the adaptive �lter weights and �ne tuning of the carrier frequency.
The tracking mode has the narrowest bandwidth and accommodates tracking
of time-varying propagation environments.

Table 6.1: AF processing parameters.

Mode Parameter Value

 0.080

Acquisition � 0.800
� 0.100
~� 0.500

 0.040

Training � 0.800
� 0.100
~� 0.250

 0.020

Tracking � 0.800
� 0.100
~� 0.125
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Figure 6.6: Frequency response of the phase lock loop for the three modes of
operation.
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Chapter 7

Naval Communication Channel

Datasets

This chapter describes three sets of data �les collected for estimating the
characteristics of communication channels. The �rst set described in Sec-
tion 7.1 contains emulated RF communication channels for verifying channel
estimation algorithms. The other two sets are from live over-the-air mobile
experiments. Section 7.2 describes a mobile HMMWV transmitting to a �xed
shore site. Section 7.3 describes a mobile Navy ship transmitting to the same
�xed shore site. These experiments provide sets of data �les representative
of urban Marine Corps and the Naval littoral communication environments,
respectively.

7.1 Multipath Emulated Data Files

The Telecom Analysis Systems, Inc. TAS 4500 RF Channel Emulator was
used to collect multipath emulated data �les to verify the channel estima-
tion algorithms. These emulated data �les provide a means to validate the
accuracy of the channel estimation procedures because the characteristics of
each of the discrete multipaths (delay, fade rate, fading statistics, path loss)
are known (to the accuracy of the TAS 4500).

The TAS 4500 converts a single RF signal (15 MHz bandwidth) from
25{2500 MHz to a 140 MHz IF frequency. This signal is split into one to six
separate propagation paths with a user-de�ned delay, fade, and loss applied to
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each path. These individual fading multipaths are combined and then mixed
back to the original RF carrier frequency. The delays on each multipath
can be varied from 1 nanosecond to 100 microseconds with 1 nanosecond
resolution. The short-term fading can be Ricean (using the GSM model) or
Rayleigh with fade rates varying from �1 to �740 Hz with 0.1 Hz resolution.
The repetition interval for the short-term fading is longer than 20 minutes.
In addition, a static phase shift can be placed on any multipath from 0 to
360 degrees in 0.1 degree increments. The loss on each multipath can be set
to 0 to 40 dB with 0.1 dB resolution. Shadowing e�ects can be emulated
using log-normal fading.

Figure 7.1 shows the equipment con�guration used to collect the multi-
path emulated data �les. A CCITT O.153 standard 511 pseudorandom bit
pattern was generated with the Telecommunications Techniques Corporation

1FIREBERD 4000 at a data rate of 999,995 bps . This repeated pattern was
modulated with BPSK (no coding, no scrambling, no di�erential encoding,
+45 degree phase shift) by the CommQuest 2000 to a 70 MHz, -17 dBm IF
signal. The IF signal was upconverted to an RF frequency of 231.5 MHz,
0 dBm with the MITEQ UP-70-313 upconverter and then ampli�ed to 40
Watts with the Ampli�er Research AR100W1000M1 Linear Power Ampli-
�er. This power ampli�er is Class A at this power ampli�cation. The RF
signal is post-selection �ltered to reduce out-of-band emissions with the stan-
dard Navy UHF multi-coupler OA/9123. After 53 dB of attenuation, the RF
signal was fed into the TAS 4500 RF Channel Emulator to create the de-
sired multipath environment. The RF multipath fading signal from the TAS
4500 was attenuated by 35 dB to -70 dBm, pre-selection �ltered by another
OA/9123 UHF multicoupler, and then downconverted to 70 MHz IF using
the MITEQ DN-313-70-AGC. This received IF signal was then used to col-
lected multipath emulated data �les using the Applied Signal Technologies
AST195 Snapshot Analyzer.

The AST195 used a 12 Msps sample rate to collect 8-bit samples. The
signal was bandpass sampled giving approximately 12 samples per bit inter-
val. Narrowband �ltering was performed at 70 MHz IF before sampling to
reduce out-of-band energy. The resulting aliased IF frequency was 2.0 MHz
with spectral inversion.

There are four �le types: reference �les; static three-path �les; dynamic

1The data rate was set to 1 Mbps but it was later found to be inaccurate by -5 bps.
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Figure 7.1: Equipment con�guration used for the collection of the multipath
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emulated data �les.

three-path �les; and UHF channel �les. Table 7.1 lists reference data �les
used to determine the e�ects of the OA/9123, the TAS4500, and the AST195
Snapshot Analyzer on the received sampled data.

The bandlimiting of the OA/9123 is an undesirable e�ect that corrupts
the resolution of the channel estimates. The OA/9123 consists of four mechanically-
tuned cavity �lters that have a 1 dB bandwidth of approximately 900 kHz at
231.5 MHz. This bandlimiting generates intersymbol interference extending
over several symbols. Over-the-air Tx operation in the San Diego area at 1
Mbps requires an OA/9123 as a post-selection �lter to prevent the jamming
of other nearby receivers. Over-the-air Rx operation requires an OA/9123
as a pre-selection �lter to reduce the e�ects of adjacent channels when the
Rx signal strength is low (the so-called \co-site" or \adjacent channel" EMI
problem). During the several weeks that these data sets were collected, the
OA/9123 �lters were retuned several times, so decorrelating their e�ects from
the over-the-air tests does not appear to be possible. As will be seen in the
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next chapter, future experiments should consider either a reduced data rate
or a di�erent �lter to improve the resolution of the channel estimates.

Tables 7.2 and 7.3 list eighteen static multipath data �les with various
delays �� , losses L, and phases ��, relative to the direct path. The purpose
of these �les is to determine the resolvable delays and losses and the accuracy
of the channel estimation procedures.

Table 7.4 lists six fading multipath data �les. Each multipath compone-
nent is a Rayleigh fading signal. The second path is 20 microseconds delayed
from the direct path while the third path is 40 microseconds delayed from
the direct path. The fade rates and the losses of each multipath are varied
among the data �les. The purpose of these data �les is to determine the
accuracy of the channel estimation procedures in estimating the fade rates
of the individual multipaths.

Table 7.5 lists the �nal three data �les collected using the TAS 4500 RF
Channel Emulator. These were collected using three UHF Channels (num-
bered 1, 2, 3) common to various Marine Corps Urban and Naval environ-
ments. These channels include a slow 
at fading channel (UHF Channel 1)
common to ship to ship communications, a slightly frequency selective chan-
nel with moderate fading (UHF Channel 2) common to ship to shore/air
communications, and a highly frequency selective channel with dynamic fad-
ing (UHF Channel 3) common to mobile vehicle communications in urban
environments.

Table 7.1: Reference Data Files

File Name Signal OA/9123 TAS 4500 OA/9123
Tx Rx

ref0.snp BPSK bypass bypass bypass

ref1.snp BPSK in-line bypass in-line
ref2.snp BPSK bypass bypass in-line

ref3.snp BPSK in-line bypass bypass
ref4.snp BPSK in-line in-line in-line

ref5.snp none in-line in-line in-line
ref6.snp CW in-line in-line in-line
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Table 7.2: Static Multipath Emulated Data Files (1{9)

File Name Paths �� L ��

�s dB deg

tas4500 1.snp Direct 0 0 0

Second 0.01 0 30

Third 0.02 0 270

tas4500 2.snp Direct 0 0 0

Second 0.10 0 30

Third 0.20 0 270

tas4500 3.snp Direct 0 0 0

Second 0.25 0 30

Third 0.50 0 270

tas4500 4.snp Direct 0 0 0

Second 0.50 0 30

Third 1.00 0 270

tas4500 5.snp Direct 0 0 0

Second 0.75 0 30

Third 1.50 0 270

tas4500 6.snp Direct 0 0 0

Second 1.00 0 30

Third 2.00 0 270

tas4500 7.snp Direct 0 0 0

Second 1.25 0 30

Third 2.50 0 270

tas4500 8.snp Direct 0 0 0

Second 1.50 0 30

Third 3.00 0 270

tas4500 9.snp Direct 0 0 0

Second 1.75 0 30

Third 3.50 0 270
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Table 7.3: Static Multipath Emulated Data Files (10{18)

File Name Paths �� L ��

�s dB deg

tas4500 10.snp Direct 0 0 0

Second 2 0 30

Third 4 0 270

tas4500 11.snp Direct 0 0 0

Second 5 0 30

Third 10 0 270

tas4500 12.snp Direct 0 0 0

Second 10 0 30

Third 20 0 270

tas4500 13.snp Direct 0 0 0

Second 100 0 30

tas4500 14.snp Direct 0 0 0

Second 20 -1.0 30

Third 40 -2.0 270

tas4500 15.snp Direct 0 0 0

Second 20 -5.0 30

Third 40 -10.0 270

tas4500 16.snp Direct 0 0 0

Second 20 -7.5 30

Third 40 -15.0 270

tas4500 17.snp Direct 0 0 0

Second 20 -12.5 30

Third 40 -17.5 270

tas4500 18.snp Direct 0 0 0

Second 20 -20.0 30

Third 40 -30.0 270
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Table 7.4: Dynamic Multipath Emulated Data Files

File Name Paths Fading f �� LD

Hz �s dB

tas4500 19.snp Direct Rayleigh 1 0 0

Second Rayleigh 1 20 -5

Third Rayleigh 1 40 -10

tas4500 20.snp Direct Rayleigh 5 0 0

Second Rayleigh 5 20 -5

Third Rayleigh 5 40 -10

tas4500 21.snp Direct Rayleigh 10 0 0

Second Rayleigh 10 20 -5

Third Rayleigh 10 40 -10

tas4500 22.snp Direct Rayleigh 20 0 0

Second Rayleigh 20 20 -5

Third Rayleigh 20 40 -10

tas4500 23.snp Direct Rayleigh 40 0 0

Second Rayleigh 40 20 -5

Third Rayleigh 40 40 -10

tas4500 24.snp Direct Rayleigh 10 0 0

Second Rayleigh 20 20 -5

Third Rayleigh 40 40 -10

Table 7.5: UHF Channels Emulated Data Files

File Name Paths Fading f �� LD

Hz �s dB

tas4500 uhfch1.snp Direct Rician 1

Second Rayleigh 10 0.01 -6

tas4500 uhfch2.snp Direct Rician 10

Second Rayleigh 10 0.07 -5

Third Rayleigh 10 0.80 -15

tas4500 uhfch3.snp Direct Rician 25

Second Rayleigh 25 0.90 -3

Third Rayleigh 25 5.10 -9
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7.2 HMMWV Data Files

This section describes a set of data �les collected from a HMMWV driving
through San Diego residential and urban environments on 16 January, 1998.
The HMMWV was con�gured as a continuous transmitter. SPAWAR System
Center, San Diego (SSC-SD) Building 379 was con�gured as the continuous
receive and data collection site using the same equipment described in Sec-
tion 7.1 (See Figures 7.3 and 7.4). A 511 pseudorandom bit pattern was
continuously transmitted from the mobile HMMWV using BPSK at 231.5
MHz, 40 Watts, 999,995 bps. The signal was sampled using the AST195 at
12 Msps to obtain approximately 5.6 seconds of contiguous data. Figure 7.2
is a photograph of the HMMWV in front of SSC-SD Building 379.

Figure 7.2: Picture of the HMMWV in front of the SSC-SD, Building 379
receive site.
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The position of the mobile vehicle was recorded using the SABRE GPS
beacon system that also was transmitting on UHF LOS. A SABRE GPS bea-
con was installed in the HMMWV and con�gured to transmit the (encoded)
GPS position of the HMMWV once a minute on UHF LOS at 270.75 MHz.
The GPS receive antenna was mounted on top of the HMMWV. The SABRE
beacon 20 Watt transmit output was fed into the OA/9123 UHF LOS multi-
coupler that fed the UHF LOS omni-directional antenna (Antenna Products
DPV-37) as shown in Figure 7.3. The received GPS beacon information
was displayed on a JMCIS terminal giving the HMMWV location, bearing,
velocity, and past track information.
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Figure 7.3: HMMWV transmitter con�guration.
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Figure 7.4: SPAWAR System Center, San Diego (SCC-SD) Building 379
receiver con�guration.
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Table 7.6 lists the data �les collected on 16 January, 1998 during a 36-
minute drive from SSC-SD Building 379 to Naval Station San Diego (NAVS-
TASD) pier 8. The signal levels were 
uctuating such that the A/D converter
clipped some portions. The relative degree of A/D clipping is indicated in
Table 7.6 along with other �gures of merit. The speed of the HMMWV is
only accurate to �5 mph.

Table 7.6: Mobile vehicle measured data �les.

File Name Location Bearing Range Speed Rx A/D Fading
mi mph level clipping

hmmwv1306.snp Catalina Blvd. north 1.0 20 good some dynamic
hmmwv1313.snp Catalina Blvd. north 1.2 30 good low dynamic
hmmwv1318.snp Catalina Blvd. north 3.2 20 low low dynamic
hmmwv1325.snp I-5 (near I-8) south 5.0 55 good some dynamic
hmmwv1328.snp I-5 (near \S") east 5.2 55 good some dynamic
hmmwv1330.snp I-5 (past 94) south 6.2 55 low high ?
hmmwv1333.snp 28th Street west 6.5 25 good some slow
hmmwv1335.snp Harbor Blvd. south 6.9 0 good some static
hmmwv1338.snp NAVSTASD south 7.4 10 good some dynamic
hmmwv1340.snp NAVSTASD south 7.9 5 good some slow
hmmwv1342.snp NAVSTASD-Pier 8 west 7.6 0 good high slow

Figure 7.5 maps the route driven. From 1306 to 1320, the HMMWV
traveled away from SSC-SD Building 379 on Catalina Boulevard. This route
traverses a residential community consisting of one-story wood houses lining
both sides of the two-lane road. From 1320 to 1332, the HMMWV traveled on
typical interstate freeways at approximately 55 mph. During this time, the
HMMWV drove through downtown San Diego from 1328 to 1330. Downtown
San Diego is home to 20-30 high rise buildings and numerous multiple story
o�ce buildings. From 1332 to 1340, the HMMWV navigated relatively small
streets near and on NAVSTASD. NAVSTASD has numerous two- to four-
story concrete buildings close to the waterfront. Navy ships line the piers on
the waterfront.
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Figure 7.5: Map with HMMWV's position track from SSC-SD, Building 379
to NAVSTASD, Pier 8.
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7.3 Navy Ship Data Files

This section describes a set of data �les collected from the USS Princeton
(CG59) while departing San Diego Bay on 21 January, 1998 and o� the coast
of Point Loma on 22 January, 1998. These data sets are representative of
the Naval littoral environment for the Military UHF band. Ranges were
extended because of a strong and persistent ducting condition that existed
during these tests. The transmit equipment from the HMMWV described
in Section 7.2 was installed on the USS Princeton with the exception of
the OA/9123 and the UHF LOS antenna. The existing OA/9123's and the
existing UHF LOS antennas (AS-4163) on the USS Princeton were utilized.
In addition, the GPS receive antenna was mounted on the ship topside with
a low noise ampli�er to drive the 150 feet of cable down to the radio room.

The USS Princeton was con�gured as a continuous transmitter. SPAWAR
System Center, San Diego (SSC-SD) Building 379 was con�gured as the con-
tinuous receive and data collection site. As before, a 511 pseudorandom bit
pattern was continuously transmitted from the USS Princeton using BPSK
at 231.5 MHz, 40 Watts, 999,995 bps. This was transmitted out of the ship's
port side AS-4163 antenna. The signal was sampled using the AST195 at
SSC-SD Building 379 at 12 Msps to obtain approximately 5.6 seconds of con-
tiguous data. Figure 7.6 is a �le photograph of a Ticonderoga Class Guided
Missile Cruiser that is similar to the USS Princeton.

Position of the mobile ship was recorded using the SABRE GPS beacon
system transmitting on UHF LOS at 260.625 MHz. The SABRE GPS beacon
was installed on the USS Princeton and con�gured to transmit the (encoded)
GPS position of the ship once a minute though an unused port on the ships
existing OA/9123 UHF LOS multicoupler that fed the ships existing UHF
LOS omni-directional antenna (starboard side AS-4163). The received GPS
beacon information was displayed on a JMCIS terminal giving the present
ship location, bearing, velocity, and past track information. Figures 7.7,
7.8, and 7.9 show the ship's location during the experiment conducted on
21-22 January, 1998. The e�ects of strong ducting propagation condition
can be seen by the 90 nmi range obtained by the SABRE GPS Beacon
during the night of 21 January, 1998 over UHF LOS in Figure 7.8. The
ship antenna height is approximately 100 feet above sea level. The receiver
antenna at SSC-SD, Building 379 is approximately 350 feet above sea level.
These heights give an LOS communication range of approximately 35 nmi.
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Figure 7.6: File Photograph of a Ticonderoga Class Guided Missile Cruiser
used as a mobile ship transmitter.
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Figure 7.7: Position tracks for the USS Princeton on 21 January, 1998 de-

parting Port of San Diego.
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Figure 7.8: Position tracks for the USS Princeton on 21 January, 1998.
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Figure 7.9: Position tracks for the USS Princeton on 22 January, 1998.
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Table 7.7 lists the data �les collected on 21-22 January, 1998 at SSC-SD
Building 379. Very little A/D clipping of the signal was observed in these
�les. Some dramatic multipath fading was evident while the ship was in San
Diego Bay. In contrast, slow 
at fading was observed in blue waters. The
transmit antenna was on the port side of the ship on the end of a yard arm.
As such, there were several times when the mast would partially block the
transmitted signal to create deep and rapid fades. The maximum range when
unobstructed for 1 Mbps was typically 40 nmi during this test period. This
is slightly longer than anticipated due to the strong ducting condition.

Table 7.7: Ship data �les. No A/D clipping.

File Name Location Bearing Range speed Rx Fading

deg mi KT dBm

ship21jan0843.snp Pier 8 290 6.5 0 -73 very slow

ship21jan1459.snp Coronado Bridge 320 4.7 5 -68 dynamic

ship21jan1518.snp in SD Bay 318 3.5 5 -69 slow

ship21jan1607.snp Ballast Point 171 3.8 15 -81 slow

ship21jan1642.snp SW of Point Loma 311 5.0 8 -70 slow

ship21jan1739.snp W of Point Loma 280 12.0 12 -71 slow

ship21jan1824.snp W of Point Loma 285 22.4 12 -79 slow

ship21jan1936.snp W of Point Loma 262 36.3 14 -94 slow

ship21jan1956.snp W of Point Loma 216 40.5 12 -105 slow

ship22jan1117.snp W of Point Loma 309 26.8 11 -83 slow

ship22jan1507.snp W of Point Loma 247 31.0 18 -90 slow

ship22jan1526.snp W of Point Loma 13 33.0 8 -101 slow

ship22jan1757.snp W of Point Loma 0 22.9 0 -83 slow

ship22jan1800.snp W of Point Loma 0 22.9 0 -81 slow
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Chapter 8

Emulated & Over-the-Air

Channel Estimates

In this chapter, the ship and the HMMWV channel soundings are analyzed
to extract channel estimates for these military scenarios. The channel model
is taken to be the quadrature-modulation fading simulator (QMFS) with
Delay-Spread function (See Chapter 3)

NX
h(t; � ) = a (t)�(t� � ):n n

n=1

So a QMFS speci�es N , the delays � 's, and fading processes fa (t)g's. Moren n

generally, the distribution of the delays and Doppler frequencies will be de-
termined from the scattering function P (f; � ). The Fourier transform in t

of h(t; �) produces the Delay-Doppler function U(f; � ). Its covariance yields
the scattering function (See Chapter 2):

2P (f; � ) = E[jU(f; � )j ]:

Links between the scattering function and delay-Doppler distribution for the
QMFS are discussed in Chapter 3. For �xed � 's and fa (t)g's JWSS andn n

uncorrelated, Example 3.3.2 shows

NX
P (f; � ) = P (f)�(� � � ):a a nn n

n=1
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So the power spectrum of each fading process registers at its corresponding
delay. More generally, Example 3.3.3 admits random delays to give

NX
P (f; � ) = P (f)p (� ):a a �n n n

n=1

So each re
ector registers a \blob" in the scattering function of its delay-
Doppler distribution. Section 3.3 makes explicit our belief system that the
converse is true: Well-separated \blobs" in the scattering function register
the local delay-Doppler distribution. It is these blobs that can test claims
such as: \the �rst path is Ricean and the second path is Rayleigh".

This approach is confounded by at least three factors. First, we are work-
ing from digital data so our channel functions are smeared by the raised co-
sine �lter x (t). Section 3.5 shows that the digital baseband Delay-DopplerRC

function U(f; k) links to U(f; � ) as

eU (f; k) = x � U(f; kT ):B RC �

The baseband digital scattering function P (f; k) is thenB

2 eP (f; k) = x � P (f; kT ):B �RC

Thus, the scattering function is smeared by the raised cosine �lter. | in
theory. The practical aspects are the second factor: we only have �nite
samples of noisy, received signals distorted by the �lters | the OA/9123 Tx
and Rx | of the real system. Third, we do not have the baseband Delay-
Spread function h | only the estimates h , and h from Chapter 5B PN FRGM

and h from Chapter 6. Given these factors, it is worthwhile to ask: HowAF

do these estimators compare on laboratory data? To answer is pretty simple.
Estimates of the Delay-Spread and scattering function are compared to the
known channel parameters of the TAS4500 RF Channel Emulator.

To establish this ground truth, we start by calibrating our estimators
on the RF laboratory data. Section 8.1 starts by establishing an end-to-
end spurious-free dynamic range (SFDR) for the RF system without the
TAS4500 channel emulator and the OA/9123 multicoupler (See Chapter 7
and Figures 7.1). The SFDR sets a threshold that prevents system-generated
spikes to register as possible re
ectors. Section 8.2 discusses the system
distortion induced by including the OA/9123 multicoupler. Section 8.3 adds
the TAS4500 and then assesses the SFDR.
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With these estimates of the SFDR, we turn to registering the pulse shape
and amplitude. Section 8.4 uses a benign emulation to show the precision
that h , h and h register amplitude levels despite this distortion.PN RFGM AF

Section 8.5 assesses these estimators on a more challenging emulation. It is
shown that the channel estimation is a�ected by the demodulation schemes.
The adaptive �lter estimate h also adapts the demodulator | and obtainsAF

an excellent channel registration. The demodulation for h , h is notPN RFGM

adaptive. Consequently, these channel estimates may be corrupted by the
demodulator. Section 8.6 veri�es this claim and points out that such prob-
lematic demodulation can be 
agged by the power spectrum. With these
calibrations in place, Sections 8.7 and 8.8 compare the channel estimators
on emulated time-variant channels with fade rates from 1{40 Hertz. The AF
�lter continues to be the best estimate overall and gives excellent estimates
of the scattering function.

The �nal sections step from the laboratory to the real world where two
datasets from Chapter 7 are analyzed. Section 8.9 examines transmissions
from a mobile HMMWV operating in an urban environment. Section 8.10
presents a ship-to-shore channel. A simple two-path QMFS model captures
most of this channel whereas more complex model is needed to model the
HMMWV channel.

8.1 Spurious-Free Dynamic Range (SFDR)

This section estimates the spurious-free dynamic range (SFDR) for each
channel estimator using the 8-bit sampled data from ref0.snp. This SNP
�le includes all RF components except the TAS4500 channel emulator and
the OA/9123 coupler. These SNP datasets contain the received RF signal
folded down by undersampling. That is, the IF frequency is approximately
f =70 MHz, and the sample rate is approximately f =12 MHz so the nega-c s

tive 1 MHz band is centered at 2 MHz. The processing for h , h , hPN GM FRGM

is:

1. Get the PN sequence s of length N =511:s

s = pn src(9; 1041; N ; 1):s

2. Get a sequence of real-valued channel snapshots y .
RF
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3. Hilbert-transform Demodulation: Extract the narrow-band phase � of
2

y at 4 MHz to phase-cancel the Hilbert transform H(y ) to get the
RFRF

demodulated signal:
�j�=2

y = H(y )e :
RF

4. Sub-Channel Estimation: The oversampling factor is O =12. Channels

estimates are pulled out of the demodulated vector y by reshaping
the vector y into 12 sub-channels. Each sub-channel has only one
sample per symbol. Then the additive noise is uncorrelated on each
sub-channel, zero-�lling s is unnecessary, and estimators described in
Chapter 5 may be applied to each sub-channel. The resulting channel
estimates for each of the sub-channels are reshaped back to a vector
giving an estimate of the Input Delay-Spread function h(t; � ).

The processing for h is:AF

1. Get a segment of the real-valued channel snapshots y .
RF

2. Bandshift y such that the negative 1 MHz band centered at the
RF

nominal frequency of -2MHz is centered at DC, lowpass �lter with the
square-root raised cosine �lter, and possibly decimate.

3. Generate repeated patterns of the PN sequence to match the time series
in Step 2.

4. Use the sub-channel estimation technique described in Chapter 6 matched
to the oversampling factor determined in Step 2.

Figure 8.1 plots the power spectrum of y from ref0.snp estimated from
RF

the �rst 300 snapshots. The input power level is P =-15 dBm and the samplei

rate is approximately f =12 MHz. This noise 
oor is -40 dB from signal buts

is corrupted by the harmonic of the carrier frequency at 4 MHz that is -25
dB from the signal.

Figures 8.2 and 8.3 plot the PDP estimate obtained from h (t; � ) andPN

h (t; �). Our belief is that h (t; �) is approximated by h (t; � ) andFRGM B PN

h (t; �) so that the power delay pro�le | smeared by the raised cosineFRGM

| is proportional to the time-average of the estimates:Z Z
1 1

2 2 2p � x (� ) / jh (t; � )j dt and jh (t; �)j dt:� PN FRGMRC
�1 �1
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Figure 8.1: Power spectrum estimate of ref0.snp

PN Estimate: Figure 8.2 shows the PN estimate of the PDP. The x-label
\Snaps = [10:30:300]; jSnapsj = 30" means the PN estimate for the PDP was
computed by averaging 30 snapshots indexed by 10, 40, 70, ..., 300. To make
the channel estimate for the nth snapshot, we grab snapshots n + [�1 : 1],
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demodulate, PN �lter, and select the nth snapshot. The plot shows the
\direct" path on the right, the mean noise 
oor at approximately -52 dB,
and several little peaks. These little peaks are system artifacts | there is
no channel emulator or converters. Thus, the SFDR for the PN estimate is
approximately -30 dB.

FRGM Estimate: Figure 8.3 shows the FRGM estimate of the PDP. The
regularization parameter 
=0.001 has little e�ect on the noise 
oor. The \7
snapshot window" means the channel estimate for the nth snapshot starts
by grabbing snapshots n+ [�3 : 3], demodulating, weighting by a Hamming
window, applying the regularization �lter using the FFT, and selecting the
nth snapshot. We make explicit that the Hamming window was not used
in Chapter 5 but employed in this chapter. The window permits a small
regularization parameter 
 =0.001 to be used and keeps h closer to the0 FRGM

inverse �lter. Figure 8.3 shows a noise 
oor at approximately -37 dB with a
single spurious peak. This sets SFDR for RFGM at -30 dB.
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Figure 8.2: PN estimate of the power delay pro�le for ref0.snp.
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Figure 8.3: RFGM estimate of the power delay pro�le for ref0.snp.
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AF Estimate: Figure 8.4 is the AF estimate of the PDP. For computational
reasons, the delay spread is restricted to a 100 �s window. To accommodate
this window, the signal was further decimated by 2 to get the O =6. Withins

this window, the noise 
oor is approximately -62 dB. The trailing peak sets
the SFDR=-50 dB. This low noise is likely due to the lowpass �ltering in
Step 2 of the AF method, and the narrow 100 �s window of the AF estimate.
Making the adaptive �lter longer not only increases the computational bur-
den, but also increases gradient noise thereby increasing the noise 
oor and
the related SFDR. Figure 8.4 clearly shows the raised cosine �lter centered
on the \direct" path. Both the PN and FRGM estimators display similar
characteristics when plotted on the same horizontal scale.

Figure 8.4: AF estimate of the power delay pro�le for ref0.snp.
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8.2 Distortion of the Raised Cosine

The SNP �le ref1.snp extends ref0.snp by including the OA/9123 multicou-
pler (this also includes the up- and down-converters). Adding these RF com-
ponents decreases the out-of-band spectral energy but slightly distorts the
signal of interest. Figure 8.5 plots the power spectrum of y from ref1.snpRF

estimated from the �rst 300 snapshots. Comparison with Figure 8.1 shows
distortion across the passband, a 5 kHz reduction of the lower band, and a
10 kHz reduction of the upper band. This distorts the raised cosine �lter
that registers each channel delay. Figure 8.6 shows the resulting distortion.
Compared to Figure 8.4, we see that this distortion raises the trailing side-
lobes and limits the path resolution. At -20 dB, the pulse is 3.7 �s wide. We
adopt -20 dB as the noise 
oor and 3.7 �s as the time resolution.

Figure 8.5: Power spectrum estimate of ref1.snp
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Figure 8.6: PN estimate of the power delay pro�le for ref1.snp. Close-up of
the distorted raised cosine �lter.
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8.3 TAS4500: SFDR & Pulse Distortion

Section 8.1 established the noise 
oor without the OA/9123 coupler or the
TAS4500 channel emulator. Section 8.2 added only the OA/9123 coupler
to show the distortion of the raised cosine. In this section, the TAS4500
channel emulator is added along with the OA/9123 to get the RF full channel
emulation

We start by noting the \noise only" SNP �le (ref5.snp) has an input
power level of P =-43 dBm. Next, a CW is transmitted to get a nominali

SNR. Figure 8.7 shows the power spectrum of ref6.snp estimated from the
�rst 300 snapshots. The input power level is P =-18 dBm giving an SNRi

of +25 dB. The spectral noise 
oor is nearly -50 dB from signal but the
harmonic of the carrier frequency at 4 MHz is -40 dB.

Figure 8.7: Power spectral estimate of the CW signal from ref6.snp. Full RF
system including the OA/9123 and the TAS4500.

A straight BPSK is recorded in ref4.snp: no additive noise, fading, or loss.
Figure 8.8 shows the power spectrum of ref4.snp estimated from the �rst 300
snapshots. The input power level is P =-14 dBm giving a nominal SNR ofi
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+29 dBm. This relatively wide signal bandwidth permits a similar claim to be
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drawn from the spectrum: The noise 
oor is approximately -30 dB from the
signal. Comparison with Figure 8.5 shows that the spectral distortion across
the passband has slightly increased. Figure 8.9 shows this corresponding
distortion of the raised cosine pulse in the time domain. Comparison with
Figure 8.6 shows that the leading sidelobe has slightly increased its power.

Figure 8.8: Power spectral estimate of the BPSK signal in ref4.snp. Full RF
system including the OA/9123 and the TAS4500. No additive noise, fading,
or loss.
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Figure 8.9: PN estimate of the power delay pro�le for the BPSK ref4.snp.
Close-up of the distorted raised cosine �lter.
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8.4 TAS4500 13: Amplitude Calibration

Section 8.1 established the noise 
oor without the TAS4500 channel emulator
and the OA/9123 coupler in the channel emulation. Section 8.2 added the
OA/9123 coupler and showed the distortion of the raised cosine. This section
adds the TAS4500 channel emulator to get the full RF multipath channel
emulation. Two SNP �les establish the noise, time, and resolution. The SNP
�le tas4500 13.snp has two paths with a relative delay of 100 �s and equal
amplitude. Figure 8.10 displays the PN estimate. The (circularly shifted)
estimated delay is 100 �s with the second path amplitude at -0.3291 dB. In
concordance with Sections 8.1 and 8.2, the SFDR=-34 dB. Figure 8.11 shows
the RFGM estimate. The estimated delay is again 100 �s with the second
path's amplitude at -0.0078 dB. Figure 8.12 is a close-up for comparison with
the AF estimate. Figure 8.13 is the AF estimate where the data has been
decimated to accommodate the 100 �s relative delay. The noise 
oor has
increased by 10 dB compared to Figure 8.4. All estimators display a leading
sidelobe in the �rst pulse.

Figure 8.10: PN estimate of the power delay pro�le for tas4500 13.snp. Em-
ulated delays: � =[0 100] �s. Emulated amplitudes: a =[0 0] dB. Estimatedn n

amplitudes: [0 -0.3291] dB.
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Figure 8.11: RFGM estimate of the power delay pro�le for tas4500 13.snp.
Emulated delays: � =[0 100] �s. Emulated amplitudes: a =[0 0] dB. Esti-

n n

mated amplitudes: [0 -0.0078] dB.
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Figure 8.12: Close-up of the RFGM estimate of the power delay pro�le for
tas4500 13.snp
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Figure 8.13: Close-up of AF estimate of the power delay pro�le for
tas4500 13.snp. Emulated delays: � =[0 100] �s. Emulated amplitudes:

n

a =[0 0] dB. Estimated amplitudes: [-0.17 0] dB.n
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8.5 TAS4500 11: Amplitude Calibration

Section 8.4 showed h , h , and h obtained excellent estimates ofPN RFGM AF

the channel characteristics. These results di�er when tas4500 11.snp �le is
considered. In this �le, three paths of equal amplitude are emulated. The
delays of Path 2 and 3 are 5 and 10 �s so they are well-separated to assess
the time resolution. Figure 8.14 displays the PN estimate. In contrast to the
SFDR of -30 dB obtained from Sections 8.1, 8.2, and 8.4, the SFDR has been
reduced. Figure 8.15 presents a close-up of the paths. The delays are at the
proper times but errors are in the amplitudes. Similar amplitude errors are
present in the RFGM estimate shown in Figures 8.16 and 8.17.

Figure 8.14: PN estimate of the power delay pro�le for tas4500 11.snp.

In contrast, the AF estimate shown in Figure 8.18 has a noise 
oor of -50
dB with maximum amplitude error of -0.17 dB. Yet in Section 8.4, we saw
all three estimators in close agreement. Why should h and h fail inPN FRGM

this case?. The reason lies in the demodulation scheme and is explored in
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the next section.
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Figure 8.15: Close-up of PN estimate of the power delay pro�le for
tas4500 11.snp. Emulated delays: � =[0 5 10] �s. Emulated amplitudes:

n

a =[0 0 0] dB. Estimated amplitudes: [-0.47 0 -1.77] dB.
n
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Figure 8.16: RFGM estimate of the power delay pro�le for tas4500 11.snp.
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Figure 8.17: Close-up of RFGM estimate of the power delay pro�le for
tas4500 11.snp. Emulated Delays: � =[0 5 10] �s. Emulated Amplitudes:

n

a =[0 0 0] dB. Estimated amplitudes: [-0.34 0 -1.5] dB.
n
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Figure 8.18: AF estimate of the power delay pro�le for tas4500 11.snp. Em-
ulated Delays: � =[0 5 10] �s. Emulated Amplitudes: a =[0 0 0] dB. Esti-

n n

mated amplitudes: [-0.079 0 -0.17] dB.

127

10 20 30 40 50 60 70 80 90 100
−60

−50

−40

−30

−20

−10

0

dB
: s

ca
led

 to
 p

ea
k v

alu
e

TAS4500_11: Power Delay Profile from |h
 AF

|2

τ delay (µ s): |Snaps| = 65, O
s
 = 6



8.6 TAS4500 18: Amplitude Calibration

Section 8.4 showed h , h , and h in close agreement on the estimatedPN RFGM AF

amplitudes for tas4500 13.snp. However, Section 8.5 showed that only hAF
registered the amplitudes for tas4500 11.snp. The reason is that the demod-
ulation scheme for h and h works best when only a single dominantPN RFGM

path is present. Multiple paths of nearly equal amplitudes may or may not
be demodulated properly.

The demodulation for h and h requires the �ltered phase extractedPN FRGM

2from y (See Section 8.1). So we start by considering the power spectrum
RF

2 2of y . Figure 8.19 shows the carrier of y for tas4500 13.snp. Even though
RF RF

this �le contains two paths of equal amplitude, the carrier at 4 MHz clearly
registers in the power spectrum. Correct demodulation is possible and all
estimators obtained close agreement on the amplitudes (See Section 8.4). In

2contrast, Figure 8.20 shows the power spectrum of y for tas4500 11.snp.
RF

The 4 MHz carrier barely exceeds the noise level. Demodulation using this
approach is corrupted by the phase errors. Consequently, h and hPN RFGM

were corrupted (See Section 8.5).

2Figure 8.19: Power spectrum estimate of y from tas4500 13.snp with de-
RF

modulation �lter.
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2Figure 8.20: Power spectrum estimate of y from tas4500 11.snp with de-
RF

modulation �lter.

To back this demodulation assertion, consider tas4500 18.snp. This time-
invariant emulation has three paths with relative delays of 0, 20, and 40 �s
and losses of 0, 20, and 30 dB, respectively. This emulation also tests how well
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di�erent amplitudes are resolved. Figure 8.21 shows the power spectrum of
2y . The 4 MHz carrier is clear. Figure 8.22 shows h cleanly registers thePNRF

amplitudes. However, h in Figure 8.23 barely displays the 30 dB pathRFGM

and obtains a poor estimate for the 20 dB path. As expected, Figure 8.24
shows that h precisely registers the amplitudes.AF

In contrast to the \blind" approach of carrier phase retrieval, the AF
estimator incorporates the known transmitted bit sequence in the carrier
recovery as shown in Figure 6.3. The phase is adjusted on-the-
y at each
sample instant using the portion of the bit sequence currently spanned by the
adaptive �lter. This method is generally more robust than the block approach
used in the PN and RFGM estimators, and is analogous to decision-directed
phase estimation used in adaptive equalization [63, pages 347{350]
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2Figure 8.21: Power spectrum estimate of y from tas4500 18.snp with de-
RF

modulation �lter.
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Figure 8.22: PN estimate of the power delay pro�le for tas4500 18.snp. Em-
ulated Delays: � =[0 20 40] �s. Emulated Amplitudes: a =[0 20 30] dB.
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Figure 8.23: RFGM estimate of the power delay pro�le for tas4500 18.snp.
Emulated Delays: � =[0 20 40] �s. Emulated Amplitudes: a =[0 20 30] dB.
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Figure 8.24: AF estimate of the power delay pro�le for tas4500 18.snp. Em-
ulated Delays: � =[0 20 40] �s. Emulated Amplitudes: a =[0 20 30] dB.

n n

Estimated amplitudes: [0 -19.82 -30.22] dB.
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8.7 TAS4500 19: Time-Variant Channel

This section records the performance of the channel estimators in a slow time-
varying channel. The SNP tas4500 19.snp is a 5.6-second dataset containing
three Rayleigh fading paths: relative delays are � =[0 20 40] �s; relative

n

powers are a =[0 -5 -10] dB; fade rates are all 1 Hertz. Figure 8.25 showsn

the h estimate of the power delay pro�le averaged over the entire dataset.AF

Excellent estimation of the amplitudes is obtained in noise with a SFDR
of approximately -40 dB. The distorted raised cosine pulse agrees with the
laboratory estimate (Figure 8.6).

Figure 8.26 shows the estimated delay-spread function. The fading on
each of the paths is evident as well as the relative amplitudes. Estimated fade
rates are obtained directly from level-crossing estimates of the tap amplitudes
(Fix � and count level-crossings of jh (t; � )j [61, pages 125{129]). More

n AF n

detail is revealed by the scattering function in Figure 8.27. The bandwidth
agrees with the expected shape. However, the peaks are shifted by 5 Hertz.
This may be due to the 5 bps error (Chapter 7) in the FIREBERD-4000.

Figure 8.25: AF estimate of the power delay pro�le for tas4500 19.snp. Em-
ulated Delays: � =[0 20 40] �s. Emulated Amplitudes: a =[0 -5 -10] dB.

n n

Estimated Amplitudes: [0 -4.96 -10.06] dB.
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Figure 8.26: AF estimate of the delay-spread function for tas4500 19.snp.
Emulated Delays: � =[0 20 40] �s. Emulated Amplitudes: a =[0 -5 -10] dB.

n n

Emulated Fade Rates: f =[1 1 1] Hz. Estimated Fade Rates: f =[1.98 1.80
n n
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Figure 8.27: AF estimate of the scattering function for tas4500 19.snp. Em-
ulated Delays: � =[0 20 40] �s. Emulated Amplitudes: a =[0 -5 -10] dB.

n n

Emulated Fade Rates: f =[1 1 1] Hz.
n
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8.8 TAS4500 24: Time-Variant Channel

This section records the performance of the channel estimators for another
time-varying channel. The SNP tas4500 24.snp also is a 5.6-second dataset
containing three Rayleigh fading paths: relative delays are � =[0 20 40] �s;

n

powers are all equal; fade rates are f =[10 20 40] Hertz. Figure 8.28 showsn

the h estimate of the power delay pro�le averaged over the entire dataset.AF

As in Section 8.7, excellent registration of the amplitudes is observed.
Figure 8.29 shows the estimated delay-spread function. The di�erent fade

rates register on each path as well as the relative amplitudes. The larger
fade rates permit a more accurate level-crossing estimate in comparison to
Section 8.7. The increased bandwidths are seen in the estimated scattering
function of Figure 8.30.

Figure 8.28: AF estimate of the power delay pro�le for tas4500 24.snp. Em-
ulated Delays: � =[0 20 40] �s; Emulated Amplitudes: a =[0 0 0] dB; Esti-

n n

mated amplitudes: [-0.24 0 -0.10] dB.
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Figure 8.29: AF estimate of the delay-spread function for tas4500 24.snp.
Emulated Delays: � =[0 20 40] �s. Emulated Fade Rates: f =[10 20 40] Hz.

n n

Estimated Fade Rates: f =[10.80 21.55 40.59] Hz.
n

 Delay Spread (usec)

 T
im

e 
(s

ec
)

 TAS4500_24

0 10 20 30 40 50 60

0

1

2

3

4

5

−30

−25

−20

−15

−10

−5

0

Figure 8.30: AF estimate of the scattering function for tas4500 24.snp. Em-
ulated Delays: � =[0 20 40] �s. Emulated Amplitudes: a =[0 0 0] dB.

n n

Emulated Fade Rates: f =[10 20 40] Hz.n
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8.9 HMMWV

Section 7.2 describes the HMMWV data. The SNP �le hmmwv1325.snp was
collected on January 16, 1998 at 13:25 while the HMMWV was driving south
on I-5 near the San Diego airport at approximately 55 mph. Figures 8.31
and 8.32 plot the estimated power delay pro�les obtained from h andAF

h . Section 8.6 shows h resolves paths down to the -30 dB level with aPN AF

SFDR=-40 dB. Likewise, h resolves paths down to the -35 dB level withPN

a SFDR=-35 dB. Both plots are in close agreement. They show a main
lobe wider than that of the lab or ship data (Figure 8.35), and both register
a secondary path at 17 �s relative delay. Thus, this HMMWV channel is
dispersive.

The delay-spread function reveals further details. Figure 8.33 plots the
estimated delay-spread function. We see that the main path exhibits deep
fades. Although the secondary path is at the -20 dB level in the PDP, this
path contributes to the channel during deep fades of the main path. The
scattering function gives insight regarding the modulations on these paths.
Figure 8.34 plots the estimated scattering function. We see the secondary
path is shifted by 10 Hertz. Moreover, the scattering function reveals sev-
eral paths trailing the main path. Comparison with the power delay pro�le
and the delay-spread function show that these paths contribute to the extra
\width" of the main lobe. In contrast to the simple two-path model for the
ship (Section 8.10), a multiple-path model is required to capture the features
of this channel.
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Figure 8.31: AF estimate of the power delay pro�le for hmmwv1325.snp.
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Figure 8.32: PN estimate of the power delay pro�le for hmmwv1325.snp.
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Figure 8.33: AF estimate of the delay-spread function for hmmwv1325.snp.
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Figure 8.34: AF estimate of the scattering function for hmmwv1325.snp.
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8.10 Ship-to-Shore

Section 7.3 describes the channel data collected from the USS Princeton.
The SNP �le ship12jan1459.snp was collected on January 12, 1998 at 14:59
while the USS Princeton was heading west under the Coronado bridge while
steaming at approximately 10 to 15 knots. Figure 8.35 is the estimated power
delay pro�le obtained from h . The relevant question is: How far down isAF

the AF registering the channel? Figure 8.13 showed that the SFDR for hAF
is at least -40 dB from the signal. More importantly, h properly registersAF

amplitudes at the -30 dB level (See Figure 8.24). Thus, Figure 8.35 is likely
good to at least -30 dB and probably down to -40 dB.

Comparison of this ship's estimated power delay pro�le with the labora-
tory estimate (Figure 8.6) shows signi�cant di�erences: the leading sidelobes
are decreased; the �rst trailing sidelobe has increased; the trailing sidelobes
have longer duration. Also, the delay spread � is approximately 27% larger

�

(See Table 2.1). This is also validated by the PN estimate of this data (See
Figure 8.36). From this larger view of the channel, the SFDR for h is 32PN

dB. Both estimators are in close agreement above -30 dB. Thus, we conclude
that channel dispersion is present. We turn to the delay-spread estimate to
give more details of this channel.

Figure 8.37 is the estimated delay spread function for ship12Jan1459.snp.
The �rst band of energy at 10 �s delay has constant magnitude so is likely a
specular path. The band of energy at 12 �s delay is dynamic with both fast
an slow modulation of its energy. Thus, the estimated delay-spread function
suggests that two paths are present. The scattering function can further
quantify this conjecture. Figure 8.38 presents the estimated scattering func-
tion computed over 14 averages. The 10 �s delay shows spectrum centered
at DC whereas the 12 �s delay's spectrum is shifted by 5 Hertz. These plots
suggest that a simple two-path model may capture the general features of
this channel.
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Figure 8.35: AF estimate of the power delay pro�le for ship12Jan1459.snp.
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Figure 8.36: PN estimate of the power delay pro�le for ship12Jan1459.snp.

140

380 385 390 395 400 405 410 415 420
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

τ: delay (µ s); Snaps=[10:100:10944]; |Snaps|=110; 3 snapshot window 

dB
: s

ca
le

d 
to

 p
ea

k 
va

lu
e

ship21jan1459: Power Delay Profile from | h
PN

|2



Figure 8.37: AF estimate of the delay-spread function for ship12Jan1459.snp.
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Figure 8.38: AF estimate of the scattering function for ship12Jan1459.snp.
Estimated from 14 averages.
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Chapter 9

Future Directions

Phase II of this e�ort should incorporate re�nements to the channel esti-
mation algorithms and extensions to the data analysis. These are listed as
follows:

Demodulation must be part of a channel estimator: Chapter 8 demonstrated
the importance of the demodulator to compensate for multipath fading to
allow for accurate channel estimates. Indeed, the PN estimators were seen
to be corrupted by errors in the carrier phase recovery. While the system
identi�cation channel estimation technique did provide for robust demodu-
lation, it is an order of magnitude more computationally expensive. Most
of the results described in this report using this technique were generated
on a supercomputer. Thus, it is worthwhile to develop PN estimators that
incorporate more robust carrier recovery and symbol timing to multipath
fading.

Robustness must be part a channel estimator: Chapter 8 demonstrated that
the raised cosine could be distorted. Likewise, the experiments were carefully
designed to operate in the linear region of the ampli�ers. Thus, it is not an
academic question to ask: What is the e�ect of these distortions on a channel
estimator? More generally, estimators must be developed that are robust
with respect to model variations.

Statistical issues of the channel functions: Estimating the distribution and
the temporal correlations of the Delay Spread function taps are valuable for
characterizing RF propagation channels of interest to the Navy. For example,
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these distributions and fade rates should be incorporated into realistic prop-
agation simulations to assess military radio performance. This information
is also vital for the initial design of radios. For example, channel dispersion
is used to determine equalizer length, while fade rates are used to deter-
mine interleaver depth for channel codes and update rates in the adaptive
equalizers.

Removing the raised channel functions: Chapter 2 showed that the channel
estimators can only approximate the digital channel functions. These digi-
tal channel functions contain the channel function \smeared" by the raised
cosine �lter. For example, the digital baseband Input Delay-Spread function
h (m; k) is the convolution of the Input Delay-Spread function h(t; � ) alongB

e ethe lag � with the raised cosine: h (m; k) = h� x (mT; kT ). This e�ect isB � RC

graphically displayed in both the emulated and over-the-air channel sound-
ings of Chapter 8. Thus, it is worthwhile to ask how cleanly the raised cosine
�lter can be deconvolved to reveal the underlying channel. Progress on this
question is promising and forms a major area for Phase II.

Acquire air-to-ground RF channel data: An important extension to the RF
channel data is an air-to-ground link. For example, UAVs extend the range
of UHF radios beyond the horizon. This data will assist in measuring the
performance of military radios in such an operation.

Propagation modeling: The propagation models of Chapter 4 may be cou-
pled with the measured data to obtain realistic estimates of received power.
This is used to determine transmit power levels that ensure adequate re-
ceiver performance and e�cient use of the frequency spectrum in a cellular
environment.
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Appendix A

Generalized Random Processes

De�nition A.0.1 [29, pages 242-243] Let (
; P;F) denote a probability
0space. A generalized random process � is a mapping � : 
 ! D (IR) which

is weakly F measurable.

0Thus, for each ! 2 
, �(!) belongs to D (IR) and, for all � 2 D(IR), the map
! ! h�(!); �i is F measurable. The means, covariances, and derivatives of
generalized random processes also are given as generalized functions.

De�nition A.0.2 [29, page 246-247] Let � be a generalized random process.

0(a) The mean m of �, if it exists, is the functional m 2 D (IR) for which
hm; �i = E[h�; �i] holds for all � 2 D(IR).

0 0(b) The covariance R of �, if it exists, is the functional R 2 D (IR)
D (IR)
given by hR; � 
 � i = E[h�; � ih�; � i] for all � , � 2 D(IR).1 2 1 2 1 2

0 0(c) The derivative � is the generalized random process given by h� ; �i =
0�h�; � i for all � 2 D(IR).

Suppose � is a real random variable with probability density function
p (� ). What is E[�(t� � )]?
� Z 1

hE[�(t� � ); �]i = E[h�(t� � ); �i] = E[�(� )] = �(u)p (u)du:
�

�1

Thus,
E[�(t� � )] = p (t):

�
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0We compute E[�(t� � )�(t � �)] in a similar fashion:

0 0hE[�(t� �)�(t � � )]; �i = E[h�(t� � )�(t � � ); �i] = E[�(�; � )]:

Thus,
0 0E[�(t� � )�(t � �)] = p (t)�(t� t ):

�
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Appendix B

Baseband Error Bounds

This appendix derives error bounds for the slow-fading assumption B-4.
Herein g(t) and p(t) are square-root raised cosine pulses corresponding to
the receiver and transmitter, respectively. ThenZ Z1 1

+j2�f ft�ug +j2�f tn ng(u)e p(t� u) du � e g(u)p(t� u) du
�1 �1

p
2with a L error bounded by 6f T . But before grinding through the deriva-n

tion, introduce the following operators to see what's really going on. For
2s 2 L (IR),

Lag Operator L s(t) = s(t� � ).n n

Frequency-Shift Operator F s(t) = exp(+j2�f t)s(t).n n

Convolution Operator C s(t) = g � s(t).g

The channel function for the phase-modulation fading is, with a slight abuse
of notation, the operator

NX1ph = a F L :n n n
N n=1

The operator modeling the input to the detector is the convolution operator
C composed with the channel function:g

NX1pC h = a C F L :g n g n n
N n=1
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The slow-fading approximation is obtained by commuting the convolution
and the frequency shift:

N NX X1 1p pC h = a C F L � a F C L :g n g n n n n g n
N Nn=1 n=1

There is a huge literature on commuting operators [66] and we are looking for
a slick approach to bound this commutant. In the meantime, the following
lemma will have to su�ce.

Lemma B.0.1 Assume g(t) and p(t) are square-root raised cosine pulses
[40, Eq. 4.18]

8
1��> T 0 � jf j �> 2T< n � n o�o

2 T �T 1�� 1�� 1+�bg(f) = 1 + cos jf j � < jf j < :
2 � 2T 2T 2T>>: 0 otherwise

Let � 2 [0; 1]. If j�f T j < 1, there holdsn

2 2kC F p� F C pk � 6f T : (B:1)g n n g n2

Proof: Set e (t) = exp(�j2�f t). It is no loss of generality to assume f isn n n

positive. Then

kC F p� F C pk = k(ge ) � p� g � pkg n n g 2 n 2db bb= kge p� gpkn 2b d b� kpk kge � gk :1 n 2

d b bBut ge (f ) = g(f +f ). Whenever g is 
at, we get excellent cancellation. Inn n

fact, when � = 0, we get the immediate bound

2d bkge � gk = 2Tf :n n2

b bWhen � > 0, a plot of the integrand g(f + f ) � g(f ) reveals the di�erencen

may be bounded by the Mean-Value Theorem | provided the di�erence doesbnot straddle any of the \joints" of g. That is,

0b b bg(f + f )� g(f ) = g (�) fn n
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bfor some � 2 f+[0; f ] provided g is di�erentiable on that interval. Summingn

over those frequencies where this applies gives the upper bound

1+� 1+�Z Z�f �fn n2T 2T2 0 2b b b2 jg(f + f )� g(f )j df = 2 jg (�(f)) f j dfn n
1�� 1��

+f +fn n2T 2T � �2 3 2� T f 1 �n� 2 max 0; � 2fn2� 8 2T T
2(�f T )n� �(�� 2f T > 0)n

4�

It remains to bound the contributions from the little regions where the Mean-
Value Theorem does not apply. There are the two end-point regions whose
contribution are bounded by:

2 3 3b2f jg((1 + �)=(2T )� f )j = f Tf1� cos(�f T )g < 5f T :n n n n n

The last inequality requires j�f T j < 1. For 0 < � < 1, there are alson

contributions from the two interior regions at the break points which are
bounded by:

p
2 3 3b2f j T � g((1 � �)=(2T ) + f )j = f Tf1� cos(�f T=�)g < 5f T =�:n n n n n

The last inequality requires j�f T j < 1. Gathering the results:n

� = 0:
2 2 2bk(ge ) � p� g � pk � kpk � 2f T = 2f T :n n n2 1

� = 1: Assuming j�f T j < 1:n

2 2 3 3 2 2 2bk(ge ) � p� g � pk � kpk f5f T + � f T =4gn 2 1 n n

2 3� f T f5f T + 3gnn

2 3� 6f Tn

0 < � < 1: Assuming j�f T j < 1n

2 2 3 3 3 3 2 2 2bk(ge ) � p� g � pk � kpk f5f T =�+ 5f T + � f T =(4�)gn 2 1 n n n

2 3� f T f5f T=�+ 5f T + 3=�gn nn

2 3� f T f5=2 + 5=2 + 3=�gn

2 3� f T f5 + 3=�g:n
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This bound agrees with the bound for � = 1. To get the same order matching
� = 0, we use

2 3 2f T f5 + 3=�g = f T f5f T + 3f T=�g
n n nn

2� f T f5=2 + 3=2gn

2� 4f Tn

Thus, the bound reported in this lemma is tight for small �'s but becomes
way too large for �'s near 1. 2
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Appendix C

Gauss-Markov Theorems

The following classical theorems provide a statistical framework for chan-
nel estimation and a context for the speedy understanding of conventional
sequence processing.

Theorem C.0.1 (Gauss-Markov) [50, page 86] Assume a linear system
of the form

y = Ax + v;

where A is a known matrix, x is an unknown but non-random vector, and
the noise vector v has �rst and second-order expectations:

GM-1 E[v] = 0,

HGM-2 E[vv ] = R .vv

bA linear estimate of x has the form x = By for some matrix B. A linear
estimate x which is unbiased for all y's forces BA = I . The linear minimum-
variance unbiased estimate (also called the Gauss-Markov estimate) is the
linear estimate x which solvesGM

2bminfE[kx� xk ] : BA = Ig:
2

It is given by
H �1 �1 H �1x = (A R A) A R yGM vv vv

and has error covariance

H H �1 �1E[(x � x)(x � x) ] = (A R A) :GM GM vv
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The Gauss-Markov estimate cannot adapt to varying noise levels nor can
it adjust for those matrices A which are ill-conditioned. By trading bias for
variance, a class of regularized estimators can be obtained which compensate
for these de�ciencies. There is an additional price to pay. For our case, it is
the requirement that we know the covariance of the channel.

Theorem C.0.2 (Minimum-Variance) [50, page 87{90] Assume a linear
system of the form

y = Ax + v;

where A is a known matrix, x is an unknown random vector uncorrelated
with the random noise vector v. The expectations are as follows:

MV-1 E[v] = 0,

HMV-2 E[vv ] = R ,vv

HMV-3 E[xx ] = R ,xx

HMV-4 E[xv ] = 0.

2bThen the linear estimate x which solves minfE[kx� xk ]g is given byMV 2

H �1 �1 �1 H �1x = (A R A +R ) A R yMV vv xx vv

with error covariance

H H �1 �1 �1E[(x � x)(x � x) ] = (A R A +R ) :MV MV vv xx
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Appendix D

Receiver Noise Computations

This appendix collects the covariance computations for the receiver noise.
We assume the baseband modeling assumptions B-1, B-2, B-3, B-4, and B-5
from Chapter 2 are in force. Recall the detector input y(t) then has the form

y(t) = p � e(t) + p � �(t);R R

where p (t) is the receiver's matched �lter and f�(t)g is the IF noise. ThisR

noise consists of the thermal noise of the system and the received RF noise.
Typically, f�(t)g is a complex-valued, zero-mean, Gaussian random process
with a spectrum shaped by the IF �lter. However, as long as we look at
f�(t)g though the receiver �lter, it is no loss of generality to model f�(t)g as
Gaussian white noise [68]:

2R (t ; t ) = � �(t � t ):�� 1 2 1 2�

It will be handy recall the next result:

Lemma D.0.2 [68, page 237] If �(t) = p � �(t) thenR

R (t ; t ) = p 
 p � �R (t ; t ):�� 1 2 R R �� 1 2

Example D.0.1 Suppose p is the square-root raised cosine �lter (p ?p =R R R

x ). If f�(t)g is white noise then f�(t)g is WSS with covarianceRC

2 2R (t ; t ) = � p ? p (t � t ) = � x (t � t ):�� 1 2 R R 1 2 RC 1 2� �
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The Gauss-Markov Theorems of Chapter C make heavy use of the noise
covariance matrix Q = [R (t ; t )]. Example D.0.1 shows that once-per-�� m n

symbol sampling gives

2Q = [R (mT; nT )] = [x ((m� n)T )] = � I:�� RC �

Because the noise covariance is used to form Q at the sampling instants,
synchronized sampling has a profound e�ect on this matrix. So what are
the e�ects of the non-synchronous sampling? The next result determines
the covariance of the noise f�(t)g when the sampling instants are subject to
jitter.

eLemma D.0.3 Suppose the sample times t = mT are jittered:m

� = p � �(t +�t );m R m m

where f�t g is a real-valued random process such thatm

J-1 The �t 's are IID.m

J-2 The �t 's are zero mean: E[�t ] = 0.m m

J-3 The distribution p is symmetric: p (t) = p (�t).� � �

Then (
p 
 p � p 
 p �R (t ; t ) m 6= m� � R R �� m m 1 21 2R (m ;m ) = :�� 1 2 p 
 � � p 
 p �R (t ; t ) m = m� R R �� m m 1 21 2

Example D.0.2 Suppose p is the square-root raised cosine �lter (p ?p =R R R

x ) Suppose f�(t)g is white noise. Then jittered sampling givesRC

2R (m ;m ) = � p � p � x (t � t ):�� 1 2 � � RC m m� 1 2

Thus, jittered sampling smears the noise covariance by the distribution of
the jitters.
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